Citation: Wang Shaojing, Li Changwei, Li Jin, Chen Bang, Guo Yuan. Novel Coumarin-Based Fluorescent Probes for Detecting Fluoride Ions in Living Cells[J]. Acta Chimica Sinica, ;2017, 75(4): 383-390. doi: 10.6023/A17010029 shu

Novel Coumarin-Based Fluorescent Probes for Detecting Fluoride Ions in Living Cells

  • Corresponding author: Guo Yuan, guoyuan@nwu.edu.cn
  • Received Date: 19 January 2017

    Fund Project: the National Natural Science Foundation of China 21072158the Preferential Financing of Science and Technology Activities in Returned Overseas Graduates in Shaanxi Province 20151190the National Natural Science Foundation of China 21472148

Figures(9)

  • Fluoride, the smallest anion, is one of the most important anions in the human body which is involved in many diseases and many life activities can be displayed by its situation. It is necessary to detect fluoride ions and determine its concentration in organism. Compared to the traditional detection methods, fluorescence probes exhibit high sensitivity, high selectivity and potential for real-time detection. Because coumarin derivatives have strong emission in the visible region, high quantum yield, high photostability and excellent bioactivity, we choose them as fluorophore to prepare new fluorescent probes. Based on the mechanism of intramolecular charge transfer (ICT), the fluorescent probes CS1, CS2 and CS3 that are coumarin-based derivatives were designed, synthesized and utilized in fluoride ions detection. Their structures were confirmed by 1H NMR, 13C NMR, IR and HRMS. Meanwhile, the crystals of CS3 were obtained by slow evaporation of an ether solution at room temperature over a period of a few days. The detection limits of CS1, CS2 and CS3 for fluoride ions were respectively determined as 21.77, 3.52 and 1.99 μmol/L, indicating that probes have a good sensitivity to the detection of fluoride. The selectivity experiment results demonstrated that the three probes were highly selective for fluoride ions over other competitive. The recognition mechanism of the fluorescent response to fluoride ions was verified by HRMS and NMR experiment in this work. A lot of detailed experiment results indicated that the fluorescent response of probes to fluoride ions attributed to the specific fluoride promoted Si-O cleavage. The study of the effect of probes on viability of cells were carried out using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The experimental results indicated that the three probes had low cytotoxicity. Then the three probes were successfully used to fluorescent detect and image fluoride ions in MCF-7 cells by fluorescence spectrum and confocal fluorescence microscopic imaging, respectively.
  • 加载中
    1. [1]

      Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746.  doi: 10.1039/c001871f

    2. [2]

      Bowman-James, K. Acc. Chem. Res. 2005, 38, 671.  doi: 10.1021/ar040071t

    3. [3]

      Gale, P. A. Acc. Chem. Res. 2006, 39, 465.  doi: 10.1021/ar040237q

    4. [4]

      Zhou, Y.; Zhang, J. F.; Yoon, J. Chem. Rev. 2014, 114, 5511.  doi: 10.1021/cr400352m

    5. [5]

      Suksai, C.; Tuntulani, T. Top. Curr. Chem. 2005, 255, 163.

    6. [6]

      Gale, P. A. Chem. Commun. 2011, 47, 82.  doi: 10.1039/C0CC00656D

    7. [7]

      Featherstone, J. D. B. Community. Dent. Oral. Epidemiol. 1999, 27, 31.  doi: 10.1111/com.1999.27.issue-1

    8. [8]

      Bassin, E. B.; Wypij, D.; Davis, R. B.; Mittleman, M. A. Cancer Causes Control 2006, 17, 421.  doi: 10.1007/s10552-005-0500-6

    9. [9]

      Matsui, H.; Morimoto, M.; Horimoto, K.; Nishimura, Y. Toxicol. In Vitro 2007, 21, 1113.  doi: 10.1016/j.tiv.2007.04.006

    10. [10]

      Basha, P. M.; Madhusudhan, N. Neurochem. Res. 2010, 35, 1017.  doi: 10.1007/s11064-010-0150-2

    11. [11]

      Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S. Chem. Rev. 2010, 110, 3958.  doi: 10.1021/cr900401a

    12. [12]

      Barbier, O.; Arreola-Mendoza, L.; DelRazo, L. M. Chem.-Biol. Interact. 2010, 188, 319.  doi: 10.1016/j.cbi.2010.07.011

    13. [13]

      Singh, P.; Barjatiya, M.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V. Urol. Res. 2001, 29, 238.  doi: 10.1007/s002400100192

    14. [14]

      Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936.  doi: 10.1039/b910560n

    15. [15]

      Hang, Y. P.; Wu, C. Y. Anal. Chim. Acta 2010, 661, 161.  doi: 10.1016/j.aca.2009.12.018

    16. [16]

      Somer, G.; Kalayci, S.; Basak, I. Talanta 2010, 80, 1129.  doi: 10.1016/j.talanta.2009.08.037

    17. [17]

      Tan, W. B.; Leng, T. H.; Lai, G. Q.; Li, Z. F.; Wu, J. F.; Shen, Y. J.; Wang, C. Y. Chin. J. Chem. 2016, 34, 809.  doi: 10.1002/cjoc.v34.8

    18. [18]

      Zhang, L.; Wang, L. M.; Zhang, G. J.; Yu, J. J.; Cai, X. F.; Teng, M. S.; Wu, Y. Chin. J. Chem. 2012, 30, 2823.  doi: 10.1002/cjoc.v30.12

    19. [19]

      Chen, Z. J.; Wang, L. M.; Zou, G. Zhang, L.; Zhang, J. L.; Cai, X. F.; Teng, M. S. Dyes Pigments 2012, 94, 410.  doi: 10.1016/j.dyepig.2012.01.024

    20. [20]

      Chen, W.; Li, Z.; Shi, W.; Ma, H. M. Chem. Commun. 2012, 48, 2809.  doi: 10.1039/c2cc17768d

    21. [21]

      Zhuo, J. B.; Yan, X. Q.; Wang, X. X.; Xie, L. L.; Yuan, Y. F. Chin. J. Org. Chem. 2015, 35, 1090(in Chinese).

    22. [22]

      Wang, F.; Wu, J. S.; Zhuang, X. Q.; Zhang, W. J.; Liu, W. M. Sens. Actuators, B 2010, 146, 260.  doi: 10.1016/j.snb.2010.02.007

    23. [23]

      Qu, Y.; Hua, J.; Tian, H. Org. Lett. 2010, 12, 3320.  doi: 10.1021/ol101081m

    24. [24]

      Wang, J. Q.; Yang, L. Y.; Hou, C.; Cao, H. S. Org. Biomol. Chem. 2012, 10, 6271.  doi: 10.1039/c2ob25903f

    25. [25]

      Ke, I. S.; Myahkostupov, M.; Castellano, F. N. J. Am. Chem. Soc. 2012, 134, 15309.  doi: 10.1021/ja308194w

    26. [26]

      Fu, L.; Jiang, F. L.; Fortin, D.; Harvey, P. D.; Liu, Y. Chem. Commun. 2011, 47, 5503.  doi: 10.1039/c1cc10784d

    27. [27]

      Liu, X. M.; Zhao, Q.; Li, Y.; Song, W. C.; Li, Y. P.; Chang, Z.; Bu, X. H. Chin. Chem. Lett. 2013, 24, 962.  doi: 10.1016/j.cclet.2013.06.032

    28. [28]

      Lv, H. M.; Yang, X. F.; Zhong, Y. G.; Guo, Y.; Li, Z.; Li, H. Anal. Chem. 2014, 86, 1800.  doi: 10.1021/ac4038027

    29. [29]

      Zhao, Z. S.; Guo, X. D.; Li, S. Y.; Yang, G. Q. Acta Chim. Sinica 2016, 74, 593(in Chinese).
       

    30. [30]

      Yu, H. B.; Li, H. L.; Zhang, X. F.; Xiao, Y.; Fang, P. J.; Lv, C. J.; Hou, W. Acta Chim. Sinica 2015, 73, 450(in Chinese).
       

    31. [31]

      Duan, Y. W.; Yang, X. F.; Zhong, Y. G.; Guo, Y.; Li, Z.; Li, H. Anal. Chim. Acta 2015, 859, 59.  doi: 10.1016/j.aca.2014.12.054

    32. [32]

      Yang, Y.; Hang, Y. Y.; Zhang, G. X.; Zhao, R.; Zhang, D. Q. Acta Chim. Sinica 2016, 74, 871(in Chinese).
       

    33. [33]

      Wu, Z. S.; Tang, X. J. Anal. Chem. 2015, 87, 8613.  doi: 10.1021/acs.analchem.5b02578

    34. [34]

      Li, L.; Ji, Y. Z.; Tang, X. J. Anal. Chem. 2014, 86, 10006.  doi: 10.1021/ac503177n

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(7)
  • Abstract views(792)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return