Citation: Chen Shiqi, Dai Jun, Zhou Kaifeng, Luo Yanju, Su Shijian, Pu Xuemei, Huang Yan, Lu Zhiyun. Synthesis and Characterization of New Solution-Processable Red Iridium (Ⅲ) Complexes Based on a Phenylation Strategy[J]. Acta Chimica Sinica, ;2017, 75(4): 367-374. doi: 10.6023/A17010015 shu

Synthesis and Characterization of New Solution-Processable Red Iridium (Ⅲ) Complexes Based on a Phenylation Strategy

  • Corresponding author: Su Shijian, mssjsu@scut.edu.cn Lu Zhiyun, luzhiyun@scu.edu.cn
  • Contributed equally to this paper
  • Received Date: 10 January 2017

    Fund Project: the National Natural Science Foundation of China 21372168

Figures(10)

  • The exploitation of high-performance solution-processable phosphorescence organic light-emitting diode (PhOLED) materials is of great significance for the realization of large-area, low-cost and flexible display. On the basis of our previous findings that the para-phenylation (phenyl or 4-methoxyphenyl, with respect to the C-Ir bond) on the cyclometalated ligand (C.N ligand) of bis[2-phenylbenzothiazolato-N, C2']iridium (Ⅲ)(acetylacetonate) can result in compounds with drastically enhanced film amorphism hence much improved electroluminescence (EL) performance, herein, this para-phenylation strategy was applied to Ir (Ⅲ) complexes bearing a molecular platform of orange-emissive bis[2-(6-diphenylamino) phenylbenzothiazolato-N, C2']iridium (Ⅲ)(acetylacetonate)[(Nbt)2Ir (acac)] to afford two new Ir (Ⅲ) complexes, namely (3PhNbt)2Ir (acac) and (3OMePhNbt)2Ir (acac). X-ray diffraction (XRD) characterization results revealed that both the two objective compounds possess much enhanced film amorphism than their parent compound (Nbt)2Ir (acac), validating the efficacy of this para-phenylation strategy in achieving Ir (Ⅲ) complexes with enhanced film amorphism. Addi-tionally, in comparison with (Nbt)2Ir (acac), both (3PhNbt)2Ir (acac) and (3OMePhNbt)2Ir (acac) show much enhanced solubility in common organic solvents, together with 5~10 nm bathochromic-shifted phosphorescence band to red region. As a consequence, (3PhNbt)2Ir (acac) and (3OMePhNbt)2Ir (acac) were expected to be promising guest materials for the fabrication of high-performance solution-processed red PhOLEDs. EL characterization results indicated that for single-layer red solu-tion-processed PhOLEDs using (3PhNbt)2Ir (acac) and (3OMePhNbt)2Ir (acac) as the guest dopant, they show peak current efficiency of 2.4 cd·A-1 and 8.7 cd·A-1, maximum brightness of 1830 cd·m-2 and 6630 cd·m-2, and CIE coordinates of (0.61, 0.39) and (0.62, 0.38), respectively. In contrast, the contral device based on the orange-emissive (Nbt)2Ir (acac) only shows a peak current efficiency of 1.5 cd·A-1, maximum brightness of 1620 cd·m-2, and CIE coordinates of (0.59, 0.41). These results confirmed that para-phenyl modification on the C.N ligand (with respect to the C-Ir bond) is indeed an effective approach to acquiring high-performance solution-processable PhOLED Ir (Ⅲ) complexes with simultaneously red-shifted emission band.
  • 加载中
    1. [1]

      Yang, X.; Zhou, G.; Wong, W. Y. Chem. Soc. Rev. 2015, 44, 8484.  doi: 10.1039/C5CS00424A

    2. [2]

      Wang, F.; Tao, Y.; Huang, W. Acta Chim. Sinica 2015, 73, 9.  doi: 10.3969/j.issn.0253-2409.2015.01.002
       

    3. [3]

      Kuei, C. Y.; Tsai, W. L.; Tong, B.; Jiao, M.; Lee, W. K.; Chi, Y.; Wu, C. C.; Liu, S. H.; Lee, G. H.; Chou, P. T. Adv. Mater. 2016, 28, 2795.  doi: 10.1002/adma.201505790

    4. [4]

      Tao, P.; Li, W. L.; Zhang, J.; Guo, S.; Zhao, Q.; Wang, H.; Wei, B.; Liu, S. J.; Zhou, X. H.; Yu, Q.; Xu, B. S.; Huang, W. Adv. Funct. Mater. 2016, 26, 881.  doi: 10.1002/adfm.v26.6

    5. [5]

      Jiao, Y.; Li, M.; Wang, N.; Lu, T.; Zhou, L.; Huang, Y.; Lu, Z.; Luo, D.; Pu, X. J. Mater. Chem. C 2016, 4, 4269.  doi: 10.1039/C6TC00153J

    6. [6]

      Kesarkar, S.; Mróz, W.; Penconi, M.; Pasini, M.; Destri, S.; Cazzaniga, M.; Ceresoli, D.; Mussini, P. R.; Baldoli, C.; Giovanella, U.; Bossi, A. Angew. Chem. Int. Ed. 2016, 55, 2714.  doi: 10.1002/anie.201509798

    7. [7]

      Kim, Y.; Park, S.; Lee, Y. H.; Jung, J.; Yoo, S.; Lee, M. H. Inorg. Chem. 2016, 55, 909.  doi: 10.1021/acs.inorgchem.5b02444

    8. [8]

      Wu, Y.; Zhang, Z.; Yue, S.; Huang, R.; Du, H.; Zhao, Y. Chin. J. Chem. 2015, 33, 897.  doi: 10.1002/cjoc.v33.8

    9. [9]

      Kim, K. H.; Moon, C. K.; Lee, J. H.; Kim, S. Y.; Kim, J. J. Adv. Mater. 2014, 26, 3844.  doi: 10.1002/adma.201305733

    10. [10]

      Fan, C. H.; Sun, P.; Su, T. H.; Cheng, C. H. Adv. Mater. 2011, 23, 2981.  doi: 10.1002/adma.v23.26

    11. [11]

      Kim, M.; Lee, J. Y. Adv. Funct. Mater. 2014, 24, 4164.  doi: 10.1002/adfm.201304072

    12. [12]

      Lee, J.; Chen, H. F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Nat. Mater. 2016, 15, 92.

    13. [13]

      Gong, S.; Sun, N.; Luo, J.; Zhong, C.; Ma, D.; Qin, J.; Yang, C. Adv. Funct. Mater. 2014, 24, 5710.  doi: 10.1002/adfm.v24.36

    14. [14]

      Liang, A.; Ying, L.; Huang, F. J. Inorg. Organomet. Polym. 2014, 24, 905.  doi: 10.1007/s10904-014-0099-8

    15. [15]

      Ahmed, E.; Earmme, T.; Jenekhe, S. A. Adv. Funct. Mater. 2011, 21, 3889.  doi: 10.1002/adfm.v21.20

    16. [16]

      Zhu, X. H.; Peng, J. B.; Cao, Y.; Roncali, J. Chem. Soc. Rev. 2011, 40, 3509.  doi: 10.1039/c1cs15016b

    17. [17]

      Ying, L.; Ho, C. L.; Wu, H.; Cao, Y.; Wong, W. Y. Adv. Mater. 2014, 26, 2459.  doi: 10.1002/adma.v26.16

    18. [18]

      Guo, T.; Zhong, W.; Zou, J.; Ying, L.; Yang, W.; Peng, J. Acta Polymerica Sinica 2016, (3), 360.  doi: 10.11777/j.issn1000-3304.2016.15208

    19. [19]

      Ma, Z.; Ding, J.; Zhang, B.; Mei, C.; Cheng, Y.; Xie, Z.; Wang, L.; Jing, X.; Wang, F. Adv. Funct. Mater. 2010, 20, 138.  doi: 10.1002/adfm.v20:1

    20. [20]

      Guo, T.; Zhong, W.; Zhang, A.; Zou, J.; Ying, L.; Yang, W.; Peng, J. New J. Chem. 2016, 40, 179.  doi: 10.1039/C5NJ02185E

    21. [21]

      Park, J. H.; Koh, T. W.; Chung, J.; Park, S. H.; Eo, M.; Do, Y.; Yoo, S.; Lee, M. H. Macromolecules 2013, 46, 674.  doi: 10.1021/ma302342p

    22. [22]

      Shao, S.; Ding, J.; Wang, L.; Jing, X.; Wang, F. J. Am. Chem. Soc. 2012, 134, 15189.  doi: 10.1021/ja305634j

    23. [23]

      Zhang, Y.; Xiong, Y.; Liu, R.; Peng, J.; Cao, Y. Acta Chim. Sinica 2007, 65, 2929.  doi: 10.3321/j.issn:0567-7351.2007.24.021
       

    24. [24]

      Lo, S. C.; Burn, P. L. Chem. Rev. 2007, 107, 1097.  doi: 10.1021/cr050136l

    25. [25]

      Zhu, M.; Zou, J.; He, X.; Yang, C.; Wu, H.; Zhong, C.; Qin, J.; Cao, Y. Chem. Mater. 2012, 24, 174.  doi: 10.1021/cm202732j

    26. [26]

      Zhu, M.; Li, Y.; Hu, S.; Li, C.; Yang, C.; Wu, H.; Qin, J.; Cao, Y. Chem. Commun. 2012, 48, 2695.  doi: 10.1039/c2cc17515k

    27. [27]

      Tian, W.; Qi, Q.; Song, B.; Yi, C.; Jiang, W.; Cui, X.; Shen, W.; Huang, B.; Sun, Y. J. Mater. Chem. C 2015, 3, 981.  doi: 10.1039/C4TC02645D

    28. [28]

      Wang, Y.; Wang, S.; Zhao, N.; Gao, B.; Shao, S.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Polym. Chem. 2015, 6, 1180.  doi: 10.1039/C4PY01332H

    29. [29]

      Xia, D.; Wang, B.; Chen, B.; Wang, S.; Zhang, B.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Angew. Chem. Int. Ed. 2014, 53, 1048.  doi: 10.1002/anie.201307311

    30. [30]

      Wang, Y.; Lu, Y.; Gao, B.; Wang, S.; Ding, J.; Wang, L.; Jing, X.; Wang, F. ACS Appl. Mater. Interfaces 2016, 8, 29600.  doi: 10.1021/acsami.6b09732

    31. [31]

      Wu, C. W.; Lin, H. C. Macromolecules 2006, 39, 7985.  doi: 10.1021/ma0610358

    32. [32]

      Giridhar, T.; Han, T. H.; Cho, W.; Saravanan, C.; Lee, T. W.; Jin, S. H. Chem. Eur. J. 2014, 20, 8260.  doi: 10.1002/chem.201400243

    33. [33]

      Liu, X.; Wang, S.; Yao, B.; Zhang, B.; Ho, C. L.; Wong, W. Y.; Cheng, Y.; Xie, Z. Org. Electron. 2015, 21, 1.  doi: 10.1016/j.orgel.2015.02.016

    34. [34]

      Jou, J. H.; Su, Y. T.; Hsiao, M. T.; Yu, H. H.; He, Z. K.; Fu, S. C.; Chiang, C. H.; Chen, C. T.; Chou, C. H.; Shyue, J. J. J. Phys. Chem. C 2016, 120, 18794.  doi: 10.1021/acs.jpcc.6b07740

    35. [35]

      Jou, J. H.; Li, C. J.; Shen, S. M.; Peng, S. H.; Chen, Y. L.; Jou, Y. C.; Hong, J. H.; Chin, C. L.; Shyue, J. J.; Chen, S. P.; Li, J. Y.; Wang, P. H.; Chen, C. C. J. Mater. Chem. C 2013, 1, 4201.  doi: 10.1039/c3tc30606b

    36. [36]

      Wu, Y.; Du, X.; Sun, J.; Li, J.; Wang, H.; Xu, B. Chin. J. Inorg. Chem. 2014, 30, 2516.

    37. [37]

      Tong, B.; Mei, Q.; Tian, R.; Yang, M.; Hua, Q.; Shi, Y.; Ye, S. RSC Adv. 2016, 6, 34970.  doi: 10.1039/C5RA28134B

    38. [38]

      Kozhevnikov V. N.; Zheng, Y.; Clough, M.; Al-Attar, H. A.; Griffiths, G. C.; Abdullah, K.; Raisys, S.; Jankus, V.; Bryce, M. R.; Monkman, A. P. Chem. Mater. 2013, 25, 2352.  doi: 10.1021/cm4010773

    39. [39]

      Henwood, A. F.; Bansal, A. K.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Zysman-Colman, E. J. Mater. Chem. C 2016, 4, 3726.  doi: 10.1039/C6TC00151C

    40. [40]

      Lee, Y. H.; Park, J.; Jo, S. J.; Kim, M.; Lee, J.; Lee, S. U.; Lee, M. H. Chem. Eur. J. 2015, 21, 2052.  doi: 10.1002/chem.v21.5

    41. [41]

      Xie, L. H.; Zhu, R.; Qian, Y.; Liu, R. R.; Chen, S. F.; Lin, J.; Huang, W. J. Phys. Chem. Lett. 2010, 1, 272.  doi: 10.1021/jz900105v

    42. [42]

      Kim, S. O.; Zhao, Q.; Thangaraju, K.; Kim, J. J.; Kim, Y. H.; Kwon, S. K. Dyes Pigm. 2011, 90, 139.  doi: 10.1016/j.dyepig.2010.10.005

    43. [43]

      Shao, S.; Ma, Z.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Adv. Mater. 2012, 24, 2009.  doi: 10.1002/adma.201104544

    44. [44]

      Zhu, M.; Zou, J.; Hu, S.; Li, C.; Yang, C.; Wu, H.; Qin, J.; Cao, Y. J. Mater. Chem. 2012, 22, 361.  doi: 10.1039/C1JM13387J

    45. [45]

      Wang, R.; Liu, D.; Zhang, R.; Deng, L.; Li, J. J. Mater. Chem. 2012, 22, 1411.  doi: 10.1039/C1JM13846D

    46. [46]

      Zhu, M.; Li, Y.; Li, C.; Zhong, C.; Yang, C.; Wu, H.; Qin, J.; Cao, Y. J. Mater. Chem. 2012, 22, 11128.  doi: 10.1039/c2jm30928a

    47. [47]

      Dai, J.; Zhou, K.; Li, M.; Sun, H.; Chen, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Dalton Trans. 2013, 42, 10559.  doi: 10.1039/c3dt50834j

    48. [48]

      Holzer, W.; Penzkofer, A.; Tsuboiet, T. Chem. Phys. 2005, 308, 93.  doi: 10.1016/j.chemphys.2004.07.051

    49. [49]

      Bronstein, H. A.; Finlayson, C. E.; Kirov, K. R.; Friend, R. H.; Williams, C. K. Organometallics 2008, 27, 2980.  doi: 10.1021/om800014e

    50. [50]

      Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chien, C. H.; Tao, Y. T.; Wen, Y. S.; Hu, Y. H.; Chou, P. T. Inorg. Chem. 2005, 44, 5677.  doi: 10.1021/ic050385s

    51. [51]

      Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551.  doi: 10.1002/adma.v7:6

    52. [52]

      Holmes, R. J.; D'Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E. Appl. Phys. Lett. 2003, 83, 3818.  doi: 10.1063/1.1624639

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(2)
  • Abstract views(537)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return