Citation: Li Tiantian, Zhao Jikuan, Li Yao, Quan Zhenlan, Xu Jie. Synthesis and Electrochemical Properties of Nitrogen-Doped Partially Graphitized Carbon/Cobalt Iron Oxides Composite[J]. Acta Chimica Sinica, ;2017, 75(5): 485-493. doi: 10.6023/A17010012 shu

Synthesis and Electrochemical Properties of Nitrogen-Doped Partially Graphitized Carbon/Cobalt Iron Oxides Composite

  • Corresponding author: Zhao Jikuan, forestzhao@163.com
  • Received Date: 10 January 2017

    Fund Project: the Natural Science Foundation of Shandong Province of China ZR2013BQ013the National Natural Science Foundation of China 21403121the Project of Shandong Province Higher Educational Science and Technology J14LC13

Figures(10)

  • With the renewable biopolymer chitosan (CTS) as a structure directing agent and organic precursor, facile coprecipitation method was applied for the cobalt and iron nitrates in solution to prepare CTS/cobalt iron layered double hydroxides composite. The LDHs sample was calcinated in a tubular furnace under Ar atmosphere via heating ramps of 5 ℃· min-1 from room temperature to 200 ℃ and kept for 1 h, then heated to 600 ℃ and remained for 2 h. After the sample was cooled naturally to room temperature, it was heated again to 250 ℃ under air atmosphere and kept for 12 h to oxidize the transition metal elements. As a result, nitrogen-doped partially graphitized carbon/cobalt iron transition metal oxides nanocomposite (N-PGC/CoFe-TMOs) was obtained. X-ray diffraction, Raman spectroscopy, N2 adsorption-desorption analysis, scanning electron microscopy, high resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy were carried out to characterize the structure, morphology and elemental composition of the product. Cyclic voltammetry and galvanostatic charge-discharge measurements were conducted to evaluate the electrochemical properties of N-PGC/CoFe-TMOs. Experimental results showed that the CTS precursor was converted into partially graphitized carbon by pyrolysis with the help of catalysis graphitization action of transition metal elements. At the same time, the derived carbon material was successfully doped with nitrogen in situ and the N/C atomic ratio was about 1/18. N-PGC/CoFe-TMOs possessed bimodal porous texture including macropores and mesopores, exhibited combined characters of electrical double-layer supercapacitor and pseudocapacitor when used as supercapacitor electrode material. At the current density of 2 A·g-1, N-PGC/CoFe-TMOs composite delivered a large discharge capacity of 671.1 F·g-1, far higher than 283.3 F·g-1 of pure cobalt iron oxides, indicating the typical synergistic effect between nitrogen-doped partially graphitized carbon and transition metal oxides. Even at the high current density of 10 A·g-1, N-PGC/CoFe-TMOs composite still remained a specific capacity of 573.3 F·g-1. After 5000 charge-discharge cycles at 10 A·g-1, the capacitance retention was 66.4%. The reported synthesis method in this work is simple and universal, and calcination process combines the nitrogen-doping, partially graphitized carbon formation with redox-active transition metal oxides synthesis in one step, endowing the product with excellent electrochemical properties.
  • 加载中
    1. [1]

      Miller, J. R.; Simon, P. Science 2008, 321, 651.  doi: 10.1126/science.1158736

    2. [2]

      Simon, P.; Gogotsi, Y. Nature Mater. 2008, 7, 845.  doi: 10.1038/nmat2297

    3. [3]

      Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.  doi: 10.1039/C1CS15060J

    4. [4]

      Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Int. J. Hydrogen Energy 2009, 34, 4889.  doi: 10.1016/j.ijhydene.2009.04.005

    5. [5]

      Li, X.-Q.; Chang, L.; Zhao, S.-L.; Hao, C.-L.; Lu, C.-G.; Zhu, Y.-H.; Tang, Z.-Y. Acta Phys.-Chim. Sinica 2017, 33, 130.
       

    6. [6]

      Liu, Z.; Chen, W.; Fan, X.; Yu, J.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.  doi: 10.1002/cjoc.v34.8

    7. [7]

      Wu, J.; Zhou, A.; Huang, Z.; Li, L.; Bai, H. Chin. J. Chem. 2016, 34, 67.  doi: 10.1002/cjoc.v34.1

    8. [8]

      Yang, J.; Yu, C.; Fan, X.; Liang, S.; Li, S.; Huang, H.; Ling, Z.; Hao, C.; Qiu, J. Energy Environ. Sci. 2016, 9, 1299.  doi: 10.1039/C5EE03633J

    9. [9]

      Staaf, L. G. H.; Lundgren, P.; Enoksson, P. Nano Energy 2014, 9, 128.  doi: 10.1016/j.nanoen.2014.06.028

    10. [10]

      Mun, Y.; Jo, C.; Hyeon, T.; Lee, J.; Ha, K.-S.; Jun, K.-W.; Lee, S.-H.; Hong, S.-W.; Lee, H. I.; Yoon, S.; Lee, J. Carbon 2013, 64, 391.  doi: 10.1016/j.carbon.2013.07.092

    11. [11]

      Gao, W.; Wan, Y.; Dou, Y.; Zhao, D. Adv. Energy Mater. 2011, 1, 115.  doi: 10.1002/aenm.201000009

    12. [12]

      Wang, D.-W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H.-M. Angew. Chem. Int. Ed. 2008, 47, 373.  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Lin, T.; Chen, I.-W.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F. Science 2015, 350, 1508.  doi: 10.1126/science.aab3798

    14. [14]

      Yang, M.; Zhong, Y.; Bao, J.; Zhou, X.; Wei, J.; Zhou, Z. J. Mater. Chem. A 2015, 3, 11387.  doi: 10.1039/C5TA02584B

    15. [15]

      Su, S.; Lai, Q.; Liang, Y. Acta Chim. Sinica 2015, 73, 735.  doi: 10.3969/j.issn.0253-2409.2015.06.014

    16. [16]

      Li, Z.-H.; Li, S.-J.; Zhou, J.; Zhu, T.-T.; Shen, H.-L.; Zhuo, S.-P. Acta Phys.-Chim. Sinica 2015, 31, 676.  doi: 10.3866/PKU.WHXB201501281

    17. [17]

      Titirici, M.-M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; Monte, F. D.; Clark, J. H.; MacLachlan, M. J. Chem. Soc. Rev. 2015, 44, 250.  doi: 10.1039/C4CS00232F

    18. [18]

      Primo, A.; Atienzar, P.; Sanchez, E.; Delgado, J. M.; García, H. Chem. Commun. 2012, 48, 9254.  doi: 10.1039/c2cc34978g

    19. [19]

      Hao, P.; Zhao, Z.; Leng, Y.; Tian, J.; Sang, Y.; Boughton, R. I.; Wong, C. P.; Liu, H.; Yang, B. Nano Energy 2015, 15, 9.  doi: 10.1016/j.nanoen.2015.02.035

    20. [20]

      Tong, X.; Zhuo, H.; Wang, S.; Zhong, L.; Hu, Y.; Peng, X.; Zhou, W.; Sun, R. RSC Adv. 2016, 6, 34261.  doi: 10.1039/C6RA01565D

    21. [21]

      Rybarczyk, M. K.; Lieder, M.; Jablonska, M. RSC Adv. 2015, 5, 44969.  doi: 10.1039/C5RA05725F

    22. [22]

      Shao, M.; Zhang, R.; Li, Z.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2015, 51, 15880.  doi: 10.1039/C5CC07296D

    23. [23]

      Yang, Q.; Lu, Z.; Liu, J.; Lei, X.; Chang, Z.; Luo, L.; Sun, X. Prog. Nat. Sci.: Mater. Int. 2013, 23, 351.  doi: 10.1016/j.pnsc.2013.06.015

    24. [24]

      Zhao, M.-Q.; Zhang, Q.; Huang, J.-Q.; Wei, F. Adv. Funct. Mater. 2012, 22, 20.

    25. [25]

      Yan, L.; Kong, H.; Li, Z. Acta Chim. Sinica 2013, 71, 822.
       

    26. [26]

      Jeong, G. H.; Baek, S.; Lee, S.; Kim, S.-W. Chem. Asian J. 2016, 11, 949.  doi: 10.1002/asia.v11.7

    27. [27]

      Jia, W.; Xu, M.; Lei, C.; Bao, S.; Jia, D. Acta Chim. Sinica 2011, 69, 1773.
       

    28. [28]

      Chen, Y.; Zhang, Z.-L.; Sui, Z.-J.; Liu, Z.-T.; Zhou, J.-H.; Zhou, X.-G. Acta Phys.-Chim. Sinica 2015, 31, 1105.  doi: 10.3866/PKU.WHXB201504081

    29. [29]

      Yang, J.; Yu, C.; Fan, X.; Zhao, C.; Qiu, J. Adv. Funct. Mater. 2015, 25, 2109.  doi: 10.1002/adfm.v25.14

    30. [30]

      Yang, J.; Yu, C.; Fan, X.; Qiu, J. Adv. Energy Mater. 2014, 1400761.

    31. [31]

      Yu, C.; Yang, J.; Zhao, C.; Fan, X.; Wang, G.; Qiu, J. Nanoscale 2014, 6, 3097.  doi: 10.1039/C3NR05477B

    32. [32]

      Yang, J.; Yu, C.; Fan, X.; Ling, Z.; Qiu, J.; Gogotsi, Y. J. Mater. Chem. A 2013, 1, 1963.  doi: 10.1039/C2TA00832G

    33. [33]

      Xu, J.; He, F.; Gai, S.; Zhang, S.; Li, L.; Yang, P. Nanoscale 2014, 6, 10887.  doi: 10.1039/C4NR02756F

    34. [34]

      Hao, P.; Zhao, Z.; Li, L.; Tuan, C.-C.; Li, H.; Sang, Y.; Jiang, H.; Wong, C. P.; Liu, H. Nanoscale 2015, 7, 14401.  doi: 10.1039/C5NR04421A

    35. [35]

      Zhang, H.-J.; Zhang, X.-G.; Yuan, C.-Z.; Gao, B.; Sun, K.; Fu, Q.-B.; Lu, X.-J.; Jiang, J.-C. Acta Phys.-Chim. Sinica 2011, 27, 455.  doi: 10.3866/PKU.WHXB20110228

    36. [36]

      Ren, L.; Hui, K. N.; Hui, K. S.; Liu, Y.; Qi, X.; Zhong, J.; Du, Y.; Yang, J. Sci. Rep. 2015, 5, 14229.  doi: 10.1038/srep14229

    37. [37]

      Baird, T.; Campbell, K. C.; Holliman, P. J.; Hoyle, R.; Noble, G.; Stirling, D.; Williams, B. P. J. Mater. Chem. 2003, 13, 2341.  doi: 10.1039/B303449F

    38. [38]

      Wu, J.; Xu, H.; Zhang, J. Acta Chim. Sinica 2014, 72, 301.
       

    39. [39]

      Depan, D.; Singh, R. P. J. Appl. Polym. Sci. 2010, 115, 3636.  doi: 10.1002/app.v115:6

    40. [40]

      Xu, Z. P.; Braterman, P. S. J. Mater. Chem. 2003, 13, 268.  doi: 10.1039/b207540g

    41. [41]

      Pardieu, E.; Pronkin, S.; Dolci, M.; Dintzer, T.; Pichon, B. P.; Begin, D.; Pham-Huu, C.; Schaaf, P.; Begin-Colin, S.; Boulmedais, F. J. Mater. Chem. A 2015, 3, 22877.  doi: 10.1039/C5TA05132K

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(6)
  • Abstract views(1247)
  • HTML views(236)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return