Citation: Chen Fangyuan, Qu Ning, Wu Qunyan, Zhang Hongxing, Shi Weiqun, Pan Qingjiang. Structures and Uranium-Uranium Multiple Bond of Binuclear Divalent Uranium Complex of Pyrrolic Schiff-base Macrocycle: a Relativistic DFT Probe[J]. Acta Chimica Sinica, ;2017, 75(5): 457-463. doi: 10.6023/A17010008 shu

Structures and Uranium-Uranium Multiple Bond of Binuclear Divalent Uranium Complex of Pyrrolic Schiff-base Macrocycle: a Relativistic DFT Probe

  • Corresponding author: Shi Weiqun, shiwq@ihep.ac.cn Pan Qingjiang, panqjitc@163.com
  • Received Date: 9 January 2017

    Fund Project: the National Natural Science Foundation of China 21273063the National Natural Science Foundation of China 21477130

Figures(5)

  • Although attempts to synthesize divalent uranium molecules were begun three decades ago, molecular U(Ⅱ) species isolable in solution have been not achieved until recent years. In 2013, Evans and co-workers synthesized the first U(Ⅱ) complex, [U(Cp')3]·[K(2, 2, 2-cryptand)] (Cp'=C5H4SiMe3) via flash reduction, that was suitable for X-ray crystal diffraction characterization. A year later, the group of Meyer obtained another divalent uranium complex, [U((Ad, MeArO)3mes)]·[K(2, 2, 2-cryptand)] employing their particularly interesting tris(aryloxide) arene ligand. The 5f36d1 and 5f4 ground states were assigned to these two complexes, respectively, by the jointed experimental/theoretical studies. It was demonstrated that the ligand significantly affect the nature of the ground state of divalent uranium complex by tuning the energetic separation of the 5f and 6d orbitals. Therefore, careful selection of ligand makes it possible to have access to +Ⅱ oxidation state of uranium and prepare new U complex. A flexible octadentate polypyrrollic Schiff-base macrocycle (H4L) has been developed to complex a variety of metals such as actinides, rare earth and transition metals that show a wide range of size and diverse oxidation states. Both mono-and bimetallic complexes featured with an intriguing "Pacman-like" structure were obtained. For example, the reaction of H4L with a trivalent uranium precursor [(U)Ⅰ3(THF)4] yielded a neutral [(U)(L)] complex, where the uranium ion was determined by the single crystal X-ray diffraction to be situated inside the ligand mouth and held by eight nitrogen atoms together. The +Ⅳ oxidation state was assigned to the uranium by presuming dihydrogen elimination. Considering the flexibility, tetravalent-anion nature as well as capability of accommodating bimetallic ions and stabilizing various oxidation states of uranium (e.g. Ⅲ~Ⅵ complexes have been found so far) that the polypyrrolic ligand has exhibited in previously synthesized complexes, two divalent uranium ions would be likely complexated by the ligand to generate a complex, [(U)2(L)]. In addition to enriching the coordination chemistry of U(Ⅱ), it is also a good example to explore electronic structures of the low-valent uranium complex and unravel the uranium-uranium multiple bonding nature. Although many theoretical studies have explored uranium complexes, the study focusing on the divalent diuranium complex of a single macrocyclic ligand remains rare. In the work, a relativistic density functional theory has been employed to investigate [(U)2(L)]. The structures in electron spin states (singlet, triplet, quintet, septet and nonet) were optimized. Short distances of U—U (2.32~2.67 Å), large bond order (2.95~3.90) and high stretching vibrational frequencies (180~263 cm-1) were calculated. Energetic calculations find that its triplet state is the ground state. It has the electronic configuration of π4σ2δ2, primarily contributed by U(5f) character. Structural and molecular-orbital analyses suggest a slightly weak uranium-uranium quadruple bond, which is confirmed by the quantum theory of atoms in molecule (QTAIM) calculations. Further comparison with analogues [(U)2(L)]2+ and [(U)2(L)]4+ was also addressed. It is found that the uranium oxidation state is able to tune the energetic matching between the highest-energy occupied orbital of ligand and the adjacent low-energy metal-based orbital, as well as correlates with the electron transfer between metal and ligand and the diuranium multiple bond number.
  • 加载中
    1. [1]

      Hashke, J. M.; Stakebake, J. L. In The Chemistry of the Actinide and Transactinide Elements, Eds.: Morss, L. R.; Edelstein, N. M.; Fuger, J., Springer, Netherlands, 2006, p. 3199.

    2. [2]

      Liddle, S. T. Angew. Chem. Int. Ed. 2015, 54, 8604.  doi: 10.1002/anie.201412168

    3. [3]

      MacDonald, M. R.; Fieser, M. E.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. J. Am. Chem. Soc. 2013, 135, 13310.  doi: 10.1021/ja406791t

    4. [4]

      La Pierre, H. S.; Scheurer, A.; Heinemann, F. W.; Hieringer, W.; Meyer, K. Angew. Chem. Int. Ed. 2014, 53, 7158.  doi: 10.1002/anie.201402050

    5. [5]

      Meyer, G. Angew. Chem. Int. Ed. 2014, 53, 3550.  doi: 10.1002/anie.v53.14

    6. [6]

      Sessler, J. L.; Cho, W. S.; Dudek, S. P.; Hicks, L.; Lynch, V. M.; Huggins, M. T. J. Porphyr. Phthalocyanines 2003, 7, 97.  doi: 10.1142/S1088424603000136

    7. [7]

      Givaja, G.; Blake, A. J.; Wilson, C.; Schroder, M.; Love, J. B. Chem. Commun. 2003, 2508.

    8. [8]

      Arnold, P. L.; Patel, D.; Wilson, C.; Love, J. B. Nature 2008, 451, 315.  doi: 10.1038/nature06467

    9. [9]

      Arnold, P. L.; Potter, N. A.; Magnani, N.; Apostolidis, C.; Griveau, J.-C.; Colineau, E.; Morgenstern, A.; Caciuffo, R.; Love, J. B. Inorg. Chem. 2010, 49, 5341.  doi: 10.1021/ic100374j

    10. [10]

      Arnold, P. L.; Potter, N. A.; Carmichael, C. D.; Slawin, A. M. Z.; Roussel, P.; Love, J. B. Chem. Commun. 2010, 46, 1833.  doi: 10.1039/b921132b

    11. [11]

      Arnold, P. L.; Hollis, E.; White, F. J.; Magnani, N.; Caciuffo, R.; Love, J. B. Angew. Chem. Int. Ed. 2011, 50, 887.  doi: 10.1002/anie.201005511

    12. [12]

      Arnold, P. L.; Jones, G. M.; Odoh, S. O.; Schreckenbach, G.; Magnani, N.; Love, J. B. Nat. Chem. 2012, 4, 221.  doi: 10.1038/nchem.1270

    13. [13]

      Zegke, M.; Nichol, G. S.; Arnold, P. L.; Love, J. B. Chem. Commun. 2015, 51, 5876.  doi: 10.1039/C5CC00867K

    14. [14]

      Su, D.-M.; Zheng, X.-J.; Schreckenbach, G.; Pan, Q.-J. Organometallics 2015, 34, 5225.  doi: 10.1021/acs.organomet.5b00649

    15. [15]

      Laikov, D. N.; Ustynyuk, Y. A. Russ. Chem. Bull. 2005, 54, 820.  doi: 10.1007/s11172-005-0329-x

    16. [16]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    17. [17]

      Baerends, E. J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; Franchini, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S. J. A.; Götz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Gusarov, S.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; Kaminski, J. W.; van Kesse, G.; Kootstra, F.; Kovalenko, A.; Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Mitoraj, M.; Morton, S. M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii, S.; Pavanello, M.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Rodríguez, J. I.; Ros, P.; Schipper, P. R. T.; van Schoot, H.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.; Snijders, J. G.; Solà, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E. M.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L.; ADF2014.06 ed.; SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, 2014.

    18. [18]

      Klamt, A.; Jonas, V.; Burger, T.; Lohrenz, J. C. W. J. Phys. Chem. A 1998, 102, 5074.  doi: 10.1021/jp980017s

    19. [19]

      Bao, Z.; Zhao, H.-B.; Qu, N.; Schreckenbach, G.; Pan, Q.-J. Dalton Trans. 2016, 45, 15970.  doi: 10.1039/C6DT01930G

    20. [20]

      Zhao, S.; Zhong, Y.; Guo, Y.; Zhang, H.; Pan, Q. Acta Chim. Sinica 2016, 74, 683.  doi: 10.3866/PKU.WHXB201512302
       

    21. [21]

      van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.  doi: 10.1063/1.466059

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R. P., C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision D.01 ed. Gaussian, Inc., Wallingford CT, 2009.

    23. [23]

      Cao, X.; Dolg, M.; Stoll, H. J. Chem. Phys. 2003, 118, 487.  doi: 10.1063/1.1521431

    24. [24]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.v33.5

    25. [25]

      Patel, D.; Liddle, S. T. Rev. Inorg. Chem. 2012, 32, 1.  doi: 10.1515/revic.2012.0001

    26. [26]

      Patel, D.; King, D. M.; Gardner, B. M.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Commun. 2011, 47, 295.  doi: 10.1039/C0CC01387K

    27. [27]

      Gardner, B. M.; Patel, D.; Cornish, A. D.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Eur. J. 2011, 17, 11266.  doi: 10.1002/chem.201101394

    28. [28]

      Liddle, S. T.; McMaster, J.; Mills, D. P.; Blake, A. J.; Jones, C.; Woodul, W. D. Angew. Chem. Int. Ed. 2009, 48, 1077.  doi: 10.1002/anie.v48:6

    29. [29]

      Hlina, J. A.; Pankhurst, J. R.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2016, 138, 3333.  doi: 10.1021/jacs.5b10698

    30. [30]

      Cavigliasso, G.; Kaltsoyannis, N. Inorg. Chem. 2006, 45, 6828.  doi: 10.1021/ic060777e

    31. [31]

      Cavigliasso, G.; Kaltsoyannis, N. Dalton Trans. 2006, 5476.

    32. [32]

      Roos, B. O.; Gagliardi, L. Inorg. Chem. 2006, 45, 803.  doi: 10.1021/ic051665a

    33. [33]

      Zhou, J.; Sonnenberg, J. L.; Schlegel, H. B. Inorg. Chem. 2010, 49, 6545.  doi: 10.1021/ic100427t

    34. [34]

      Long, B.; Bao, J. L.; Truhlar, D. G. J. Am. Chem. Soc. 2016, 138, 14409.  doi: 10.1021/jacs.6b08655

    35. [35]

      Xiong, Z.; Chen, Q.; Zheng, X.; Wei, X. Acta Chim. Sinica 2005, 63, 572.  doi: 10.3321/j.issn:0567-7351.2005.07.004
       

    36. [36]

      Zhang, Y.; Ma, X.; Zhang, X.; Lei, M. Acta Chim. Sinica 2016, 74, 340.  doi: 10.11862/CJIC.2017.034
       

    37. [37]

      Yang, Y.; Zhang, Q.; Shi, J.; Fu, Y. Acta Chim. Sinica 2016, 74, 422.  doi: 10.3866/PKU.WHXB201512082
       

    38. [38]

      Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124.  doi: 10.1039/C0DT01018A

    39. [39]

      Tassell, M. J.; Kaltsoyannis, N. Dalton Trans. 2010, 39, 6719.  doi: 10.1039/c000704h

    40. [40]

      Liu, J.-B.; Chen, G. P.; Huang, W.; Clark, D. L.; Schwarz, W. H. E.; Li, J. Dalton Trans. 2017, 46, 2542.  doi: 10.1039/C6DT03953G

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    5. [5]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    6. [6]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(4)
  • Abstract views(812)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return