Citation: Li Jinxiang, Qin Hejie, Zhang Xueying, Guan Xiaohong. Improving the Reactivity of Zerovalent Iron toward Various Contaminants by Weak Magnetic Field: Performances and Mechanisms[J]. Acta Chimica Sinica, ;2017, 75(6): 544-551. doi: 10.6023/A17010007 shu

Improving the Reactivity of Zerovalent Iron toward Various Contaminants by Weak Magnetic Field: Performances and Mechanisms

  • Corresponding author: Guan Xiaohong, guanxh@tongji.edu.cn
  • Received Date: 7 January 2017

    Fund Project: the National Natural Science Foundation of China U1532120the National Natural Science Foundation of China 21522704the National Natural Science Foundation of China 51478329

Figures(9)

  • Zero-valent iron (ZVI), a simple but amazingly versatile material, has low intrinsic reactivity toward various contaminants as documented from laboratory studies as well as field demonstrations, which poses potential limitations to its practical application in environmental remediation. Although many methods have been developed to improve the reactivity of ZVI in the literature, high costs, significant work-load, and complex operations may inhibit the application of these methods. We pioneered the research in employing weak magnetic field (WMF) to accelerate the removal of various metal(loid)s, including Se(Ⅳ)/Se(Ⅵ), As(V)/As(Ⅲ), Sb(V), Cu(Ⅱ)/EDTA-Cu(Ⅱ), and Cr(Ⅵ) by pristine ZVI (Pri-ZVI) and/or aged ZVI. The rate constants of metal(loid)s sequestration by Pri-ZVI or aged ZVI were increased by 1.1~383.7 folds due to the application of WMF. Furthermore, WMF could be employed to improve the removal of organic contaminants by ZVI activated H2O2 or persulfate because of the accelerated ZVI corrosion in the presence of WMF. The superimposed WMF had negligible influence on the apparent activation energy of metal(loid)s removal by ZVI, indicating that WMF accelerated metal(loid)s removal by ZVI but did not change the mechanisms. The XAFS, XRD, and XPS analysis confirmed that the application of WMF did not change the mechanisms of metal(loid)s removal but accelerated the transformation (reduction or oxidation) of contaminants. Electrochemical analysis showed that the accelerated ZVI corrosion in the presence of WMF was ascribed to the enhanced mass transfer. We further identified the relative contribution of Lorentz force (FL) and magnetic gradient force (FΔB) in the enhancing effect of WMF. It suggested that FΔB rather than FL was the major driving force for the observed WMF effect on the enhanced reactivity of ZVI. Moreover, we proposed to apply premagnetization to increase the reactivity of ZVI toward As(Ⅲ) sequestration taking advantage of the magnetic memory of ZVI, i.e., the remanence of ZVI. In addition, the premagnetized ZVI (Mag-ZVI) samples from different origins were applied to enhance the removal of various oxidative contaminants[such as azo dyes, As(Ⅲ), Pb(Ⅱ), Cu(Ⅱ), Se(Ⅳ), Ag(Ⅰ) and Cr(Ⅵ)] under well-controlled experimental conditions. The rate constants of contaminants removal by premagnetized ZVI samples were 1.2~12.2 folds greater than those by Pri-ZVI samples. As a chemical-and energy-free method, improving the reactivity of ZVI by either WMF superimposition or premagnetization treatment is novel and promising.
  • 加载中
    1. [1]

      Gould, J. P. Water Res. 1982, 16, 871.  doi: 10.1016/0043-1354(82)90016-1

    2. [2]

      Khudenko, B. M. Water Sci. Technol. 1985, 15, 204.
       

    3. [3]

      Gillham, R. W.; O'Hannesin, S. F. Ground Water 1994, 32, 958.  doi: 10.1111/gwat.1994.32.issue-6

    4. [4]

      Matheson, L. J.; Tratnyek, P. G. Environ. Sci. Technol. 1994, 28, 2045.  doi: 10.1021/es00061a012

    5. [5]

      EPA, USA, Ground Water Remedies Selected at Superfund Sites, 2002.

    6. [6]

      Guan, X. H.; Sun, Y. K.; Qin, H. J.; Li, J. X.; Lo, I. M.; He, D.; Dong, H. R. Water Res. 2015, 75, 224.  doi: 10.1016/j.watres.2015.02.034

    7. [7]

      Wang, C.; Zhang, W. Environ. Sci. Technol. 1997, 94, 9602.

    8. [8]

      Hung, H. M.; Hoffmann, M. R. Environ. Sci. Technol. 1998, 32, 3011.  doi: 10.1021/es980273i

    9. [9]

      Lien, H. L.; Zhang, W. X. J. Environ. Eng. 1999, 125, 1042.  doi: 10.1061/(ASCE)0733-9372(1999)125:11(1042)

    10. [10]

      Harendra, S.; Vipulanandan, C. Colloid Surface A 2008, 322, 6.

    11. [11]

      Liou, Y. H.; Lo, S. L.; Lin, C. J.; Wen, H. K.; Weng, S. C. J. Hazard. Mater. 2005, 126, 189.  doi: 10.1016/j.jhazmat.2005.06.038

    12. [12]

      Son, H. S.; Im, J. K.; Zoh, K. D. Water Res. 2009, 43, 1457.  doi: 10.1016/j.watres.2008.12.029

    13. [13]

      Jou, C. J. G.; Hsieh, S. C.; Lee, C. L.; Lin, C.; Huang, H. W. J. Taiwan Inst. Chem. E 2010, 41, 216.  doi: 10.1016/j.jtice.2009.08.012

    14. [14]

      Xu, J.; Hao, Z.; Xie, C.; Lv, X.; Yang, Y.; Xu, X. Desalination 2012, 284, 9.  doi: 10.1016/j.desal.2011.08.029

    15. [15]

      Huang, Y. H.; Tang, C.; Zeng, H. Chem. Eng. J. 2012, 200, 257.

    16. [16]

      Scherer, M. M.; Johnson, K. M.; Westall, J. C.; Tratnyek, P. G. Environ. Sci. Technol. 2001, 35, 2804.  doi: 10.1021/es0016856

    17. [17]

      Noubactep, C. Environ. Technol. 2008, 29, 909.  doi: 10.1080/09593330802131602

    18. [18]

      Kim, D. H. J. Hazard. Mater. 2011, 192, 928.  doi: 10.1016/j.jhazmat.2011.05.075

    19. [19]

      Jiang, J. H.; Li, Y. H.; Cai, W. M. J. Hazard. Mater. 2008, 153, 508.  doi: 10.1016/j.jhazmat.2007.08.083

    20. [20]

      Ambashta, R. D.; Repo, E.; Sillanpää, M. Ind. Eng. Chem. Res. 2011, 50, 11771.  doi: 10.1021/ie102121e

    21. [21]

      Liang, L.; Sun, W.; Guan, X.; Huang, Y.; Choi, W.; Bao, H.; Li, L.; Jiang, Z. Water Res. 2014, 49, 371.  doi: 10.1016/j.watres.2013.10.026

    22. [22]

      Liang, L.; Guan, X.; Huang, Y.; Ma, J.; Sun, X.; Qiao, J.; Zhou, G. Sep. Purif. Technol. 2015, 156, Part 3, 1064.
       

    23. [23]

      Sun, Y. K.; Guan, X. H.; Wang, J. M.; Meng, X. G.; Xu, C. H.; Zhou, G. M. Environ. Sci. Technol. 2014, 48, 6850.  doi: 10.1021/es5003956

    24. [24]

      Guan, X.; Jiang, X.; Qiao, J.; Zhou, G. J. Hazard. Mater. 2015, 300, 688.  doi: 10.1016/j.jhazmat.2015.07.070

    25. [25]

      Jiang, X.; Qiao, J.; Lo, I. M. C.; Wang, L.; Guan, X.; Lu, Z.; Zhou, G.; Xu, C. J. Hazard. Mater. 2015, 283, 880.  doi: 10.1016/j.jhazmat.2014.10.044

    26. [26]

      Feng, P.; Guan, X. H.; Sun, Y. K.; Choi, W. Y.; Qin, H. J.; Wang, J. M.; Qiao, J. L.; Li, L. N. J. Environ. Sci.-China 2015, 31, 175.  doi: 10.1016/j.jes.2014.10.017

    27. [27]

      Li, J.; Bao, H.; Xiong, X.; Sun, Y.; Guan, X. Sep. Purif. Technol. 2015, 151, 276.  doi: 10.1016/j.seppur.2015.07.056

    28. [28]

      Xu, C.; Zhang, B.; Zhu, L.; Lin, S.; Sun, X.; Jiang, Z.; Tratnyek, P. G. Environ. Sci. Technol. 2016, 50, 1483.  doi: 10.1021/acs.est.5b05360

    29. [29]

      Liang, L. P.; Guan, X. H.; Shi, Z.; Li, J. L.; Wu, Y. N.; Tratnyek, P. G. Environ. Sci. Technol. 2014, 48, 6326.  doi: 10.1021/es500958b

    30. [30]

      Xu, H.; Sun, Y.; Li, J.; Li, F.; Guan, X. Environ. Sci. Technol. 2016, 50, 8214.  doi: 10.1021/acs.est.6b01763

    31. [31]

      Xiong, X.; Sun, Y.; Sun, B.; Song, W.; Sun, J.; Gao, N.; Qiao, J.; Guan, X. RSC Adv. 2015, 5, 13357.  doi: 10.1039/C4RA16318D

    32. [32]

      Xiang, W.; Zhang, B.; Zhou, T.; Wu, X.; Mao, J. Sci. Rep.-UK 2016, 6.
       

    33. [33]

      Xiong, X.; Bo, S.; Jing, Z.; Gao, N.; Shen, J.; Li, J.; Guan, X. Water Res. 2014, 62, 53.  doi: 10.1016/j.watres.2014.05.042

    34. [34]

      Ragsdale, S. R.; Grant, K. M.; White, H. S. J. Am. Chem. Soc. 1998, 120, 13461.  doi: 10.1021/ja982540q

    35. [35]

      Hinds, G.; Coey, J.; Lyons, M. E. G. Electrochem. Commun. 2001, 3, 215.  doi: 10.1016/S1388-2481(01)00136-9

    36. [36]

      Lioubashevski, O.; Katz, E.; Willner, I. J. Phy. Chem. B 2004, 108, 5778.  doi: 10.1021/jp037785q

    37. [37]

      Waskaas, M.; Kharkats, Y. I. J. Electroanal. Chem. 2001, 502, 51.  doi: 10.1016/S0022-0728(00)00528-3

    38. [38]

      Li, J.; Qin, H.; Zhang, W.-X.; Shi, Z.; Zhao, D.; Guan, X. Sep. Purif. Technol. 2016, 176, 40.
       

    39. [39]

      Aziz, F.; Pandey, P.; Chandra, M.; Khare, A.; Rana, D. S.; Mavani, K. R. J. Magn. Magn. Mater. 2014, 356, 98.  doi: 10.1016/j.jmmm.2013.12.037

    40. [40]

      Ghosh, N.; Mandal, B. K.; Kumar, K. M. J. Magn. Magn. Mater. 2012, 324, 3839.  doi: 10.1016/j.jmmm.2012.06.026

    41. [41]

      Li, J. X.; Shi, Z.; Ma, B.; Zhang, P. P.; Jiang, X.; Xiao, Z. J.; Guan, X. H. Environ. Sci. Technol. 2015, 49, 10581.  doi: 10.1021/acs.est.5b02699

    42. [42]

      Li, J.; Qin, H.; Guan, X. Environ. Sci. Technol. 2015, 49, 1440.

    43. [43]

      Li, X.; Zhou, M.; Pan, Y.; Xu, L. Chem. Eng. J. 2016, 307, 1092.
       

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(31)
  • Abstract views(2512)
  • HTML views(480)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return