Citation: Li Dongyan, Wang Jingbo, Guo Junjiang, Tan Ningxin, Li Xiangyuan. Investigations of Chemical Kinetic Mechanisms for Low-to-medium Temperature Ignition of Ethylene[J]. Acta Chimica Sinica, ;2017, 75(4): 375-382. doi: 10.6023/A16120656 shu

Investigations of Chemical Kinetic Mechanisms for Low-to-medium Temperature Ignition of Ethylene

  • Corresponding author: Tan Ningxin, tanningxin@scu.edu.cn
  • Received Date: 6 December 2016

    Fund Project: the National Natural Science Foundation of China 91441132

Figures(12)

  • In order to investigate the ignition characteristic of ethylene combustion at low-to-medium temperature, contem-porary detailed kinetic mechanisms for ethylene combustion, including AramcoMech_1.3 mechanism, Creck mechanism, Glarborg's mechanism, San Diego (UCSD) mechanism and Wang's mechanism, were used to simulate ignition delay times of ethylene combustion by Chemkin Pro software reflected shock tube model and closed homogeneous reactor under the as-sumption of constant-volume, homogeneous and adiabatic conditions. Simulated ignition delay times of ethylene combustion using these mechanisms disagree with the experimental data from literatures at low-to-medium temperature.Sensitivity analysis was carried out to identify the controlling steps of C2H4 ignition at 800~1300 K. The sensitivity of ig-nition delay time was calculated by the formula Sensitivity=[τign(2ki)-τign(ki)]/τign(ki)×100%. Here τign(ki) is ignition delay time based on the original combustion mechanism, τign(2ki) is ignition delay time simulated using this mechanism in which the rate constant of reaction i is doubled through multiplying the pre-exponential factor of reaction i by 2. It was demonstrated that C2H3+O2=CH2CHO+O(R1), C2H3+O2=CH2O+HCO(R2) have great sensitivity to the ignition of C2H4 over a wide temperature range, while those reactions involved HO2 (including H2-O2 and C2H4+HO2 system) are important for C2H4 ignition process at low temperature.By modifying these rate constants of R1 and R2 with more accurate calculated results and adding C2H3+O2=C2H3OO reaction and those reactions involved C2H4+HO2 system, one revised mechanism (UCSD-R2) was obtained. UCSD-R2 mechanism can produce better agreement with recent ethylene ignition delay time experimental data from literatures at low-to-medium temperature compared with UCSD mechanism.When UCSD-R2 mechanism was adopted to simulate the ignition delay time of ethylene combustion, the first stage ignition delay time at low temperature (800~950 K) and negative temperature coefficient at medium temperature (950~1100 K) were found. They were explained by using sensitivity analysis and rate-of-production analysis. The method of rate-of-production analysis can be employed to calculate the contribution of each reaction to the production and consumption of every species or to calculate total rate-of-production of every species, by Chemkin Pro software closed homogeneous reactor under the assumption of constant-volume, homogeneous and adiabatic conditions. It was demonstrated that C2H4+HO2 system can shorten the ignition delay time obviously, the production and consumption of HO2 radical play a significant role for first stage ignition of C2H4 at low temperature, the consumption of C2H3 radical results in the negative temperature coefficient at medium temperature.
  • 加载中
    1. [1]

      Shao, J.-X.; Tan, N.-X.; Liu, W.-X.; Li, X.-Y. Acta Phys. Chim. Sin. 2010, 26(2), 270.

    2. [2]

      Jiang, R.; Liu, G.; Zhang, X. Energ. Fuel. 2013, 27(5), 2563.  doi: 10.1021/ef400367n

    3. [3]

      Li, J.; Shao, J.-X.; Liu, C.-X.; Rao, H.-B.; Li, Z.-R.; Li, X.-Y. Acta Chim. Sinica 2010, 68(3), 239.
       

    4. [4]

      Xu, C.; Konnov, A. A. Energy 2012, 43(1), 19.  doi: 10.1016/j.energy.2011.11.006

    5. [5]

      Suzuki, M.; Moriwaki, T.; Okazaki, S.; Okuda, T.; Tanzawa, T. Astronautica Acta 1973, 18(5), 359.

    6. [6]

      Cadman, P.; Bambrey, R. J.; Box, S. K.; Thomas, G. O. Combust. Sci. Technol. 2002, 174(11-12), 111.  doi: 10.1080/713712958

    7. [7]

      Liang, J.-H.; Hu, H.-H.; Wang, S.; Zhang, S.-T.; Fan, B.-C.; Cui, J.-P. Chin. J. Theor. Appl. Mech. 2014, 46(1), 155.  doi: 10.6052/0459-1879-13-027

    8. [8]

      Kumar, K.; Mittal, G.; Sung, C.; Law, C. Combust. Flame 2008, 153(3), 343.  doi: 10.1016/j.combustflame.2007.11.012

    9. [9]

      Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45(10), 638.  doi: 10.1002/kin.2013.45.issue-10

    10. [10]

      Zhou, C.-W.; Li, Y.; O'Connor, E.; Somers, K. P.; Thion, S.; Keesee, C.; Mathieu, O.; Petersen, E. L.; DeVerter, T. A.; Oehlschlaeger, M. A.; Kukkadapu, G.; Sung, C.-J.; Alrefae, M.; Khaled, F.; Farooq, A.; Dirrenberger, P.; Glaude, P.-A.; Bat-tin-Leclerc, F.; Santner, J.; Ju, Y.; Held, T.; Haas, F. M.; Dryer, F. L.; Curran, H. J. Combust. Flame 2016, 167, 353.  doi: 10.1016/j.combustflame.2016.01.021

    11. [11]

      Ranzi, E.; Cavallotti, C.; Cuoci, A.; Frassoldati, A.; Pelucchi, M.; Faravelli, T. Combust. Flame 2015, 162(5), 1679.  doi: 10.1016/j.combustflame.2014.11.030

    12. [12]

      Lopez, J. G.; Rasmussen, C. L.; Alzueta, M. U.; Gao, Y.; Marshall, P.; Glarborg, P. P. Combust. Inst. 2009, 32(1), 367.  doi: 10.1016/j.proci.2008.06.188

    13. [13]

      Prince, J. C.; Williams, F. A. Combust. Flame. 2012, 159(7), 2336.  doi: 10.1016/j.combustflame.2012.02.012

    14. [14]

      "Chemical-Kinetic Mechanisms for Combustion Applications", San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html).

    15. [15]

      Guo, J.; Xu, J.; Li, Z.; Tan, N.; Li, X. J. Phys. Chem. A 2015, 119(13), 3161.  doi: 10.1021/jp511991n

    16. [16]

      Wang, H.; Laskin, A.; Djurisic, Z. M.; Law, C. K.; Davis, S.G.; Zhu, D. L. In Chemical and Physical Processes of Combustion, the 1999 Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Raleigh, NC, October, 1999, pp. 129~132. http://ignis.usc.edu/Mechanisms/C2-C4/c2.html.

    17. [17]

      Sabia, P.; Joannon, M. d.; Picarelli, A.; Chinnici, A.; Ragucci, R. Fuel. 2012, 91(1), 238.  doi: 10.1016/j.fuel.2011.07.026

    18. [18]

      Merchant, S. S.; Goldsmith, C. F.; Vandeputte, A. G.; Burke, M. P.; Klippenstein, S. J.; Green, W. H. Combust. Flame 2015, 162(10), 3658.  doi: 10.1016/j.combustflame.2015.07.005

    19. [19]

      CHEMKIN-PRO 15092, Reaction design, San Diego, 2009.

    20. [20]

      Kopp, M. M.; Donato, N. S.; Petersen, E. L.; Metcalfe, W. K.; Burke, S. M.; Curran, H. J. J. Propul. Power 2014, 30(3), 790.  doi: 10.2514/1.B34890

    21. [21]

      Penyazkov, O. G.; Sevrouk, K. L.; Tangirala, V.; Joshi, N. P. Combust. Inst. 2009, 32(2), 2421.  doi: 10.1016/j.proci.2008.06.194

    22. [22]

      Kopp, M. M.; Petersen, E. L.; Metcalfe, W. K.; Burke, S. M.; Curran, H. J. J. Propul. Power 2014, 30(3), 799.  doi: 10.2514/1.B34891

    23. [23]

      Goldsmith, C. F.; Harding, L. B.; Georgievskii, Y.; Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2015, 119(28), 7766.  doi: 10.1021/acs.jpca.5b01088

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(2)
  • Abstract views(939)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return