Citation: Meng Chao, Wang Hua, Wu Yubin, Fu Xianzhi, Yuan Rusheng. Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process[J]. Acta Chimica Sinica, ;2017, 75(5): 508-513. doi: 10.6023/A16110641 shu

Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process

  • Corresponding author: Wu Yubin, yuanrs@fzu.edu.cn
  • Received Date: 28 November 2016

    Fund Project: the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment 2014B01the National Natural Science Foundation of China 21643009the National Key Technologies R & D Program of China 2014BAC13B03the Natural Science Foundation of Fujian Province of China 2015J01046

Figures(4)

  • In this work, the reaction mechanism of photocatalytic oxidation of sacrificial ethanol during water-splitting process by titanium dioxide (TiO2) has been studied. The pure rutile TiO2 or mixed-phase structure titania (P25) was employed as the typical photocatalyst in ethanol oxidation. The as-obtained results showed that the formation of 2, 3-butanediol over TiO2 in heterogeneous systems is mainly due to the photochemical reaction proceeded between acetaldehyde molecule and ethanol molecule instead of the direct coupling of α-hydroxyethyl radicals. This is different from the early work claimed that the fundamental process to produce 2, 3-butanediol is based on the direct coupling of α-hydroxyethyl radicals generated by TiO2 oxidation. The photochemical reaction between acetaldehyde molecule and ethanol molecule to form 2, 3-butanediol can also occur when the concentration of the solid catalyst was reduced to certain degree if using P25 as catalyst in heterogeneous model, and the selectivity of 2, 3-butanediol would change from ca. 60% to 0% when enlarging the concentration of P25 step by step. However, the selectivity of 2, 3-butanediol is relatively invariable when the concentration of catalyst was changed if using rutile as photocatalyst. We thought that the distinct diffusing behaviors for mobile ·OHf and surface bound ·OHs generated on different titania can explain the varied selectivity when the solid concentration of TiO2 changed. The generation and diffusion of ·OH from the surface of P25 (80% anatase) to bulk solution is a key process to inhibit the direct coupling of α-hydroxyethyl radicals to produce acetaldehyde or further overoxidation products, and the reaction zone of ·OHf depends on the concentration of P25. For the case of rutile TiO2 promoted reaction, the lack of mobile ·OHf on rutile TiO2 makes the photochemical reaction between acetaldehyde molecule and ethanol molecule more facile to occur in bulk solution since the surface bound ·OHs can only have chance to attack the surface adsorbed substrates. This may be an important reason to explain why the selectivity of 2, 3-butanediol in ethanol oxidation was not influenced significantly by the variation of rutile TiO2 concentration. All the results regarding ethanol transformation during photocatalytic process achieved here cast some light on the mechanistic understanding of the reactions proceeded on the surface of solid catalyst in heterogeneous model and in the bulk solution when both catalytic step and photochemical step existed simultaneously.
  • 加载中
    1. [1]

      Pan, C.; Gu, Z.-Z.; Dong, L. Acta Chim. Sinica 2009, 67, 1981.  doi: 10.3321/j.issn:0567-7351.2009.17.007
       

    2. [2]

      Lv, X.-J.; Xu, Y.-M.; Wang, Z.; Zhao, J.-C.; Wu, Y.-D. Acta Chim. Sinica 2004, 62, 1455.  doi: 10.3866/PKU.WHXB20041211
       

    3. [3]

      Li, Y.-J.; Cao, T.-P.; Wang, C.-H.; Shao, C.-L. Acta Chim. Sinica 2011, 69, 2597.
       

    4. [4]

      Wan, Z.-Q.; Zheng, S.-N.; Jia, C.-Y.; Yan, W. Acta Chim. Sinica 2009, 67, 403.  doi: 10.3321/j.issn:0251-0790.2009.02.035
       

    5. [5]

      Guo, Q.; Xu, C.-B.; Ren, Z.-F.; Yang, W.-S.; Ma, Z.-B.; Dai, D.-X.; Fan, H.-J.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2012, 134, 13366.  doi: 10.1021/ja304049x

    6. [6]

      Xu, C.-B.; Yang, W.-S.; Ren, Z.-F.; Dai, D.-X.; Guo, Q.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2013, 135, 19039.  doi: 10.1021/ja4114598

    7. [7]

      Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. J. Photochem. Photobiol. A 1995, 89, 177.  doi: 10.1016/1010-6030(95)04039-I

    8. [8]

      Idriss, H.; Seebauer, E. G. J. Mol. Catal. A: Chem. 2000, 152, 201.  doi: 10.1016/S1381-1169(99)00297-6

    9. [9]

      Llorca, J.; Homs, N.; Sales, J.; Piscina, P. R. D. L. J. Catal. 2002, 209, 306.  doi: 10.1006/jcat.2002.3643

    10. [10]

      Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nat. Chem. 2011, 3, 489.

    11. [11]

      Meng, C.; Yang, K.; Fu, X.-Z.; Yuan, R.-S. ACS Catal. 2015, 5, 3760.  doi: 10.1021/acscatal.5b00644

    12. [12]

      Lu, H.-Q.; Zhao, J.-H.; Li, L.; Gong, L.-M.; Zheng, J.-F.; Zhang, L.-X.; Wang, Z.-J.; Zhang, J.; Zhu, Z.-P. Energy Environ. Sci. 2011, 4, 3384.  doi: 10.1039/c1ee01476e

    13. [13]

      Yang, P.-J.; Zhao, J.-H.; Cao, B.-Y.; Li, L.; Wang, J.-Z.; Tian, X.-X.; Jia, S.-P.; Zhu, Z.-P. ChemCatChem 2015, 7, 2384.  doi: 10.1002/cctc.201500326

    14. [14]

      Wang, J.; Yang, P.-J.; Cao, B.-Y.; Zhao, J.-H.; Zhu, Z.-P. Appl. Surf. Sci. 2015, 325, 86.  doi: 10.1016/j.apsusc.2014.10.143

    15. [15]

      Lu, H.-Q.; Zhao, B.-B.; Zhang, D.; Lv, Y.-L.; Shi, B.-P.; Shi, X. C.; Wen, J.; Yao, J.-F.; Zhu, Z.-P. J. Photochem. Photobiol. A 2013, 272, 1.  doi: 10.1016/j.jphotochem.2013.08.021

    16. [16]

      Cao, B.-Y.; Zhang, J.; Zhao, J.-H.; Wang, Z.-J.; Yang, P.-J.; Zhang, H.-X.; Li, L.; Zhu, Z.-P. ChemCatChem 2014, 6, 1673.  doi: 10.1002/cctc.v6.6

    17. [17]

      Li, N.; Yan, W. J.; Yang, P.-J.; Zhang, H.-X.; Wang, Z.-J.; Zheng, J.-F.; Jia, S.-P.; Zhu, Z.-P. Green Chem. 2016, 18, 6029.  doi: 10.1039/C6GC00883F

    18. [18]

      Ohno, T.; Izumi, S.; Fujihara, K.; Masaki, Y.; Matsumura, M. J. Phys. Chem. B 2000, 104, 6801.  doi: 10.1021/jp993184g

    19. [19]

      Chai, Z.-G.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D.-S. J. Am. Chem. Soc. 2016, 138, 10128.  doi: 10.1021/jacs.6b06860

    20. [20]

      Shimizu, Y.; Sugimoto, S.; Kawanishi, S.; Suzuki, N. Bull. Chem. Soc. Jpn. 1991, 64, 3607.  doi: 10.1246/bcsj.64.3607

    21. [21]

      Asmus, K. D.; Mockel, H.; Henglein, A. J. Phys. Chem. 1973, 77, 1218.  doi: 10.1021/j100629a007

    22. [22]

      Sun, L. Z.; Bolton, J. R. J. Phys. Chem. 1996, 100, 4127.  doi: 10.1021/jp9505800

    23. [23]

      Wu, W.-M.; Wen, L.-R.; Shen, L.-J.; Liang, R.-W.; Yuan, R.-S.; Wu, L. Appl. Catal. B 2013, 130~131, 163.

    24. [24]

      Wu, W.-M.; Liu, G.; Liang, S.-J.; Chen, Y.; Shen, L.-J.; Zheng, H.-R.; Yuan, R.-S.; Hou, Y.-D.; Wu, L. J. Catal. 2012, 290, 13.  doi: 10.1016/j.jcat.2012.02.005

    25. [25]

      Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.  doi: 10.2138/am-2000-0416

    26. [26]

      Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.  doi: 10.1016/j.surfrep.2008.10.001

    27. [27]

      Li, R.-G.; Weng, Y.-X.; Zhou, X.; Wang, X.-L.; Mi, Y.; Chong, R.-F.; Han, H.-X.; Li, C. Energy Environ. Sci. 2015, 8, 2377.  doi: 10.1039/C5EE01398D

    28. [28]

      Kavan, L.; Gratzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, J. J. Am. Chem. Soc. 1996, 118, 6716.  doi: 10.1021/ja954172l

    29. [29]

      Yamakata, A.; Ishibashi, T. A.; Onishi, H. Chem. Phys. 2007, 339, 133.  doi: 10.1016/j.chemphys.2007.05.010

    30. [30]

      Xu, M.; Gao, Y.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y.; Idriss, H.; Wçll, C. Phys. Rev. Lett. 2011, 106, 138302.  doi: 10.1103/PhysRevLett.106.138302

    31. [31]

      Tang, H.; Prasad, K.; Sanjines, R.; Schmid, P. E.; Levy, F. J. Appl. Phys. 1994, 75, 2042.  doi: 10.1063/1.356306

    32. [32]

      Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Sci. Rep. 2014, 4, 4043.

    33. [33]

      Goto, H.; Hanada, Y.; Ohno, T.; Matsumura, M. J. Catal. 2004, 225, 223.  doi: 10.1016/j.jcat.2004.04.001

    34. [34]

      Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. J. Am. Chem. Soc. 2010, 132, 8453.  doi: 10.1021/ja102305e

    35. [35]

      Kim, W.; Tachikawa, T.; Moon, G. H.; Majima, T.; Choi, W. Angew. Chem., Int. Ed. 2014, 53, 14036.  doi: 10.1002/anie.v53.51

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

Metrics
  • PDF Downloads(23)
  • Abstract views(2616)
  • HTML views(744)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return