Citation: Zheng Yuan, Luo Jing, Wei Wei, Liu Xiaoya. Polyaniline-graphene Hollow Spheres based on Graphene Stabilized Pickering Emulsions[J]. Acta Chimica Sinica, ;2017, 75(4): 391-397. doi: 10.6023/A16110624 shu

Polyaniline-graphene Hollow Spheres based on Graphene Stabilized Pickering Emulsions

  • Corresponding author: Luo Jing, jingluo19801007@126.com
  • Received Date: 25 November 2016

    Fund Project: the Six Talents Peak Project of Jiangsu Province XNY-012the National Natural Science Foundation of China 51573072

Figures(10)

  • In recent years, hybrid nanomaterials of graphene and polyaniline have attracted extensive interest and have been considered as promising electrode materials for supercapacitor combining the advantages of both materials with synergistic effects. In contrast to the well-developed two-dimensional planar structure of graphene-PANI, the pursuit of hollow gra-phene-PANI hybrid structure is relatively less investigated. The hollow micro/nanostructured graphene-PANI materials with the nanoscale shell, inner cavity and pore structures, is highly expected to exhibit remarkable enhanced supercapacitor performance owing to the enhanced specific surface area and shortened diffusion length for both charge and mass transport. In this work, a novel kind of graphene-polyaniline hollow capsules (PANI-SGR HS) was prepared via Pickering emulsion polymerization using sulfonated graphene (SGR) as Pickering stabilizer. Amphiphilic sulfonated graphene is prepared by a covalent modification and used to stabilize oil phase containing aniline monomer. Aniline molecules were adsorbed to the oil-water interface owing to the electrostatic interaction between amino groups of aniline and sulfonic groups of SGR, which subsequently underwent interfacial polymerization at the oil/water interface upon the addition of initiator ammonium persulfate (APS). The effects of the sulfonation degree of graphene, the SGR concentration as well as the oil/water volume ratio on the stability and morphology of SGR stabilized emulsions were investigated in detail. The SGR with appropriate sulfonation degree can produce stable emulsions. The average diameter of the emulsion droplet decreased with the increasing concentration of SGR stabilizer. The emulsion stability can be improved with the increased water phase infraction. After polymerization of aniline and removal of the oil phase, three-dimensional hollow graphene-polyaniline sphere (PANI-SGR HS) was obtained. The morphology of PANI-SGR HS was observed by scanning electron microscopy (SEM). The special hollow sphere structure not only enlarged the liquid contact area but also improved charge carrier mobility. The hollow sphere modified electrode exhibited excellent performance with a specific capacitance of 480.59 F·g-1 at 1 A·g-1, which is much higher than 251 F·g-1 of the common two-dimensional stacked graphene-polyaniline film. This novel three-dimensional PANI-SGR HS material may have potential applications in energy storage.
  • 加载中
    1. [1]

      Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.; Potts, J.; Rouff, R. Adv. Mater. 2010, 22, 3906.  doi: 10.1002/adma.201001068

    2. [2]

      He, Q.; Wu, S.; Yin, Z.; Zhang, H. Chem. Sci. 2012, 3, 1764.  doi: 10.1039/c2sc20205k

    3. [3]

      Yang, L.; Tang, Y.; Yan, D.; Liu, T.; Liu, C.; Luo, S. ACS Appl. Mater. Interfaces 2015, 8, 169.

    4. [4]

      Tong, Z.; Fang, S.; Zheng, H.; Zhang, X. Acta Chim. Sinica 2016, 74, 185.
       

    5. [5]

      Gao, H.; Lu, Q.; Liu, N.; Wang, X.; Wang, F. J. Mater. Chem. A 2015, 3, 7215.  doi: 10.1039/C5TA00379B

    6. [6]

      Wang, L.; Lu, X.; Lei, S.; Song, Y. J. Mater. Chem. A 2014, 2, 4491.  doi: 10.1039/C3TA13462H

    7. [7]

      Luo, J.; Chen, Y.; Ma, Q.; Liu, R.; Liu, X. J. Mater. Chem. C 2014, 2, 4818.  doi: 10.1039/c4tc00126e

    8. [8]

      Domingues, S. H.; Salvatierra, R. V.; Oliveira, M. M.; Zarbin, A. J. Chem. Commun. 2011, 47, 2592.  doi: 10.1039/C0CC04304D

    9. [9]

      Sun, J.; Zhu, Z.; Lai, J.; Luo, J.; Liu, X. Chem. J. Chin. Univ. 2015, 36, 581.

    10. [10]

      Fan, X.; Yang, Z.; Liu, Z. Chin. J. Chem. 2016, 34, 107.  doi: 10.1002/cjoc.v34.1

    11. [11]

      Du, P.; Liu, H. C.; Yi, C.; Wang, K.; Gong, X. ACS Appl. Mater. Interfaces 2015, 7, 23932.  doi: 10.1021/acsami.5b06261

    12. [12]

      Yang, F.; Xu, M.; Bao, S. J.; Wei, H.; Chai, H. Electrochim. Acta 2014, 137, 381.  doi: 10.1016/j.electacta.2014.06.017

    13. [13]

      Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T. ACS Appl. Mater. Interfaces 2013, 5, 3382.  doi: 10.1021/am4003827

    14. [14]

      Liu, Z.; Chen, W.; Fan, X.; Yu, J.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.  doi: 10.1002/cjoc.v34.8

    15. [15]

      Fan, W., Xia, Y. Y.; Tjiu, W. W.; Pallathadka, P. K.; He, C.; Liu, T. J. Power Sources 2013, 243, 973.  doi: 10.1016/j.jpowsour.2013.05.184

    16. [16]

      Luo, J.; Ma, Q.; Gu, H.; Zheng, Y.; Liu, X. Electrochim. Acta 2015, 173, 184.  doi: 10.1016/j.electacta.2015.05.053

    17. [17]

      Trung, N. B.; Van Tam, T.; Kim, H. R.; Hur, S. H.; Kim, E. J.; Choi, W. M. Chem. Eng. J. 2014, 255, 89.  doi: 10.1016/j.cej.2014.06.028

    18. [18]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21.  doi: 10.1016/S1359-0294(02)00008-0

    19. [19]

      Wei, W.; Wang, T.; Luo, J.; Zhu, Y.; Gu, Y.; Liu, X. Colloids Surf., A 2015, 487, 58.  doi: 10.1016/j.colsurfa.2015.09.060

    20. [20]

      McCoy, T. M.; Pottage, M. J.; Tabor, R. F. J. Phys. Chem. C 2014, 118, 4529.  doi: 10.1021/jp500072a

    21. [21]

      Hu, Z.; Marway, H. S.; Kasem, H.; Pelton, R.; Cranston, E. D. ACS Macro Lett. 2016, 5, 185.  doi: 10.1021/acsmacrolett.5b00919

    22. [22]

      Kim, S. D.; Zhang, W. L.; Choi, H. J. J. Mater. Chem. C 2014, 2, 7541.  doi: 10.1039/C4TC01040J

    23. [23]

      Yin, G.; Zheng, Z.; Wang, H.; Du, Q.; Zhang, H. J. Colloid Interface Sci. 2013, 394, 192.  doi: 10.1016/j.jcis.2012.11.024

    24. [24]

      Fei, X.; Xia, L.; Chen, M.; Wei, W.; Luo, J.; Liu, X. Materials 2016, 9, 731.  doi: 10.3390/ma9090731

    25. [25]

      Wan, W.; Zhao, Z.; Hughes, T. C.; Qian, B.; Peng, S.; Hao, X.; Qiu, J. Carbon 2015, 85, 16.  doi: 10.1016/j.carbon.2014.12.058

    26. [26]

      Chen, X.; Eggers, P. K.; Slattery, A. D.; Ogden, S. G.; Raston, C. L. J. Colloid Interface Sci. 2014, 430, 174.  doi: 10.1016/j.jcis.2014.05.048

    27. [27]

      Zhang, Y.; Zheng, X.; Wang, H.; Du, Q. J. Mater. Chem. A 2014, 2, 5304.  doi: 10.1039/c3ta15242a

    28. [28]

      Luo, J.; Jiang, S.; Liu, R.; Zhang, Y.; Liu, X. Electrochim. Acta 2013, 96, 103.  doi: 10.1016/j.electacta.2013.02.072

    29. [29]

      Yang, J.; Shi, T.; Jin, W.; Zou, Y. Acta Chim. Sinica 2008, 66, 552.  doi: 10.3321/j.issn:0567-7351.2008.05.011
       

    30. [30]

      Zhu, Y.; Sun, J.; Yi, C.; Wei, W.; Liu, X. Soft Matter 2016, 12, 7577.  doi: 10.1039/C6SM01263A

    31. [31]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 8622.  doi: 10.1021/la000189s

    32. [32]

      Zheng, Z.; Zheng, X.; Wang, H.; Du, Q. ACS Appl. Mater. Interfaces 2013, 5, 7974.  doi: 10.1021/am4020549

    33. [33]

      Zheng, X.; Zhang, Y.; Wang, H.; Du, Q. Macromolecules 2014, 47, 6847.  doi: 10.1021/ma501253u

    34. [34]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Adv. Colloid Interface Sci. 2003, 100, 503.

    35. [35]

      Yi, W.; Wu, H.; Wang, H.; Du, Q. Langmuir 2016, 32, 982.  doi: 10.1021/acs.langmuir.5b04477

    36. [36]

      Luo, J.; Jiang, S.; Wu, Y.; Chen, M.; Liu, X. J. Polym. Sci., Part A:Polym. Chem. 2012, 50, 4888.  doi: 10.1002/pola.v50.23

    37. [37]

      Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T. ACS Appl. Mater. Interfaces 2013, 5, 3382.  doi: 10.1021/am4003827

    38. [38]

      Zhou, H.; Sun, Y.; Li, G.; Chen, S.; Lu, Y. Polymer 2014, 55, 4459.  doi: 10.1016/j.polymer.2014.06.079

    39. [39]

      Zang, X.; Li, X.; Zhu, M.; Li, X.; Zhen, Z.; He, Y.; Zhu, H. Na-noscale 2015, 7, 7318.

    40. [40]

      Mu, B.; Zhang, W.; Wang, A. J. Nanopart. Res. 2014, 16, 1.

    41. [41]

      Coşkun, E.; Zaragoza-Contreras, E. A.; Salavagione, H. J. Carbon 2012, 50, 2235.  doi: 10.1016/j.carbon.2012.01.041

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    8. [8]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    19. [19]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(8)
  • Abstract views(1803)
  • HTML views(323)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return