Citation: Zhang Zhaoxiang, Luan Wenxiu, Zhang Chaoying, Liu Yujie. Capillary Electrophoresis Immunoassay by Gold Nanoparticles Assisted Signal Generation and Sequential Stacking[J]. Acta Chimica Sinica, ;2017, 75(4): 403-407. doi: 10.6023/A16110599 shu

Capillary Electrophoresis Immunoassay by Gold Nanoparticles Assisted Signal Generation and Sequential Stacking

  • Corresponding author: Zhang Zhaoxiang, qustzhzhx@126.com
  • Received Date: 12 November 2016

    Fund Project: the National Natural Science Foundation of China 21105051

Figures(6)

  • Brevetoxins (BTXs) are highly toxic biotoxin and can cause human intoxication through food chain. The detection of brevetoxins is very difficult due to lack of optical and electrochemical (EC) signal. In this work, we developed an ultrasensitive capillary electrophoresis (CE) immunoassay and EC method for the determination of BTX-B by gold nanoparticles (AuNPs) assisted signal generation and sequential stacking concentration. The AuNPs were synthesized by sodium citrate reduction of HAuCl4 in water. The AuNPs were conjugated with horseradish peroxidase (HRP) and antibody (Ab) to immobilize the HRP and Ab on the AuNPs surface with the molar ratio of HRP/Ab of 9/1. The Ab conjugated on the AuNPs surface incubated with limited amount of BTX-B in standard solution or shellfish samples to produce immunocomplex on the basis of the noncompetitive immunoreactions. Before sample injection, a NaOH plug with 10 cm height difference for 150 s was hydrodynamically injected into the separation capillary. After incubation for 40 min at room temperature, the immune sample was then electrokinetically injected into the capillary at 10 kV for 330 s. The positively charged analytes migrated rapidly into the capillary and were neutralized and stacked at the boundary between sample and NaOH plug, which led to the first preconcentration. After sample loading, the capillary inlet vial was changed to low-pH buffer solution, and H+ in the buffer solution moved rapidly into the capillary toward cathode across the neutral analytes zone. The neutralized analytes were positively charged again and the injected analytes were further condensed. Next, the formed immunocomplex, unbound HRP-Au-Ab probe and the excess HRP were separated by CE and sensitively detected by EC detection. AuNPs were used as carriers of HRP and Ab in order to carry out EC detection with the EC signals derived from catalytic reaction of the carried HRP to the H2O2/o-aminophenol system. Simultaneously, the EC signal was highly amplified by improving the HRP/Ab molar ratio on the surface of AuNPs. The proposed method by AuNPs assisted signal generation and on-line sequential concentration realized the sensitive and rapid determination of BTX-B in shellfish samples. In the range between 0.1 and 120 ng/mL, the assay allowed quantitative determination of BTX-B and the limit of detection (LOD) was 26 ng/L. The LOD was 365-fold lower than ELISA method. The amplified sensitivity was enhanced by high HRP/Ab ratio at AuNPs surface and sequential preconcentration. The proposed method provides a convenient and sensitive analytical approach for the determination of trace BTX in complex samples.
  • 加载中
    1. [1]

      Official Methods of Analysis, 14th ed., Association of Official Analytical Chemists, Arlington, VA, 1984, Section 18.086.

    2. [2]

      Hua, Y.; Lu, W.; Henry, M. S.; Pierce, R. H.; Cole, R. B. Anal. Chem. 1995, 67, 1815.  doi: 10.1021/ac00107a010

    3. [3]

      Nozawa, A.; Tsuji, K.; Ishida, H. Toxicon 2003, 42, 91.  doi: 10.1016/S0041-0101(03)00123-5

    4. [4]

      Wang, Z.; Plakas, S. M.; Said, K. R. E.; Jester, E. L. E.; Granade, H. R.; Dickey, R. W. Toxicon 2004, 43, 455.  doi: 10.1016/j.toxicon.2004.02.017

    5. [5]

      Wang, Z.; Ramsdell, J. S. Chem. Res. Toxicol. 2011, 24, 54.  doi: 10.1021/tx1002854

    6. [6]

      Naar, J.; Bourdelais, A.; Tomas, C.; Kubanek, J.; Whitney, P. L.; Flewelling, L. Environ. Health Perspect. 2002, 110, 179.  doi: 10.1289/ehp.02110179

    7. [7]

      Bottein, M.-Y. D.; Fuquay, J. M.; Munday, R.; Selwood, A. I.; Ginkel, R. V.; Miles, C. O.; Loader, J. I.; Wilkins, A. L.; Ramsdell, J. S. Toxicon 2010, 55, 497.  doi: 10.1016/j.toxicon.2009.09.022

    8. [8]

      Yang, W. C.; Schmerr, M. J.; Jackman, R.; Bodemer, W.; Yeung, E. S. Anal. Chem. 2005, 77, 4489.  doi: 10.1021/ac050231u

    9. [9]

      Liu, Y.; Mei, L.; Liu, L.; Peng, L.; Chen, Y.; Ren, S. Anal. Chem. 2011, 83, 1137.  doi: 10.1021/ac103166n

    10. [10]

      Wang, X.; Song, Y.; Song, M.; Wang, Z.; Li, T.; Wang, H. Anal. Chem. 2009, 81, 7885.  doi: 10.1021/ac901681k

    11. [11]

      Zhang, X. W.; Zhang, Z. X. Toxicon 2012, 59, 626.  doi: 10.1016/j.toxicon.2012.02.011

    12. [12]

      Zhang, X. W.; Zhang, Z. X. J. Food Compos. Anal. 2012, 28, 61.  doi: 10.1016/j.jfca.2012.07.008

    13. [13]

      Zhang, X. W.; Zhang, Z. X. J. Chromatogr. Sci. 2013, 51, 107.  doi: 10.1093/chromsci/bms112

    14. [14]

      Zhang, Z. X.; Zhang, F.; Liu, Y. Acta Chim. Sinica 2012, 70, 2251(in Chinese).
       

    15. [15]

      Liu, X.; Wu, Z.; Zhang, Q.; Zhao, W.; Zong, C.; Gai, H. Anal. Chem. 2016, 88, 2119.  doi: 10.1021/acs.analchem.5b03653

    16. [16]

      Zhou, G.; Chang, J.; Pu, H.; Shi, K.; Mao, S.; Sui, X.; Ren, R.; Cui, S.; Chen, J. ACS Sens. 2016, 1, 295.  doi: 10.1021/acssensors.5b00241

    17. [17]

      Yang, H.; Fung, S.; Xu, S.; Sutherland, D. P.; Kollmann, T. R.; Liu, M.; Turvey, S. E. ACS Nano 2015, 9, 6774.  doi: 10.1021/nn505634h

    18. [18]

      Paul, A. M.; Fan, Z.; Sinha, S. S.; Shi, Y.; Le, L.; Bai, F.; Ray, P. C. J. Phys. Chem. C 2015, 119, 23669.  doi: 10.1021/acs.jpcc.5b07387

    19. [19]

      Ma, Z. Y.; Ruan, Y. F.; Xu, F.; Zhao, W. W.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2016, 88, 3864.  doi: 10.1021/acs.analchem.6b00012

    20. [20]

      Harimech, P. K.; Gerrard, S. R.; El-Sagheer, A. H.; Brown, T.; Kanaras, A. G. J. Am. Chem. Soc. 2015, 137, 9242.  doi: 10.1021/jacs.5b05683

    21. [21]

      Su, S.; Sun, H.; Cao, W.; Chao, J.; Peng, H.; Zuo, X.; Yuwen, L.; Fan, C.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 6826.  doi: 10.1021/acsami.5b12833

    22. [22]

      Wang, Q.; Zhu, H. Z.; Yang, X. H.; Wang, K. M.; Yang, L. J.; Ding, J. Acta Chim. Sinica 2012, 70, 1483(in Chinese).
       

    23. [23]

      Guo, Y.; Li, W. W.; Zheng, M. Y.; Huang, Y. Acta Chim. Sinica 2014, 72, 713(in Chinese).
       

    24. [24]

      Ambrosi, A.; Airò, F.; Merkoci, A. Anal. Chem. 2010, 82, 1151.  doi: 10.1021/ac902492c

    25. [25]

      Chang, C. W.; Tseng, W. L. Anal. Chem. 2010, 82, 2696.  doi: 10.1021/ac902342c

    26. [26]

      Chang, C. W.; Chu, S. P.; Tseng, W. L. J. Chromatogr. A 2010, 1217, 7800.  doi: 10.1016/j.chroma.2010.10.023

    27. [27]

      Miao, P.; Ning, L.; Li, X. Anal. Chem. 2013, 85, 7966.  doi: 10.1021/ac401762e

    28. [28]

      Zhang, Z. X.; Li, X.; Ge, A.; Zhang, F.; Sun, X.; Li, X. Biosens. Bioelectron. 2013, 41, 452.  doi: 10.1016/j.bios.2012.09.005

    29. [29]

      Bradford, M. M. Anal. Biochem. 1976, 72, 248.  doi: 10.1016/0003-2697(76)90527-3

    30. [30]

      Wang, J.; Huang, W.; Liu, Y.; Cheng, J.; Yang, J. Anal. Chem. 2004, 76, 5393.  doi: 10.1021/ac049891+

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(2)
  • Abstract views(883)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return