Citation: Yang Tao, Cui Yanan, Chen Huaiyin, Li Weihua. Controllable Preparation of Two Dimensional Metal-or Covalent Organic Frameworks for Chemical Sensing and Biosensing[J]. Acta Chimica Sinica, ;2017, 75(4): 339-350. doi: 10.6023/A16110592 shu

Controllable Preparation of Two Dimensional Metal-or Covalent Organic Frameworks for Chemical Sensing and Biosensing

  • Corresponding author: Li Weihua, ytlwh666@163.com
  • Received Date: 9 November 2016

    Fund Project: Marine Science and Technology Projects of Huangdao District 2014-4-1the National Natural Science Foundation of China 41476083863 program 2015AA034404the National Natural Science Foundation of China 21275084the National Natural Science Foundation of China 51525903the National Natural Science Foundation of China 21675092

Figures(17)

  • In recent years, with the continuously deep and expanded researches of two-dimensional (2D) nanomaterials rep-resented by graphene, 2D framework materials represented by 2D metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great research interests and extensive attention. Compared with other mesoporous or mi-croporous nanomaterials, these organic framework materials provide uniformly nano-sized pores. And as compared to graphene, 2D organic framework materials can be expected to design and assemble the functionalized building units. For example, carboxyl group, amino group, hydroxyl group, etc. can be grafted onto the frameworks through various chemical reactions. These advantages are hopeful to make 2D organic framework materials a new generation of functional materials to improve the sensitivity and stability of the sensing interfaces. This review simply summarized 2D MOFs and COFs respectively, and generalized the current methods for preparing 2D MOFs and COFs nanomaterials based on "bottom-up" and "top-down" strategies and made simple comments. In addition, the applications of (2D) MOFs and COFs materials in chemical sensing and biosensing fields were introduced, and the potential and key problems of 2D MOFs and COFs in sensing applications were also discussed. And at last, this review gives some outlook for the future applications of 2D MOFs and COFs nanomaterials.
  • 加载中
    1. [1]

      Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 113, 3766.  doi: 10.1021/cr300263a

    2. [2]

      He, X.; Liu, F.; Zeng, Q.; Liu, Z. Acta Chim. Sinica 2015, 73, 924.
       

    3. [3]

      Wee, A. T. S. ACS Nano 2013, 7, 5649.  doi: 10.1021/nn403389h

    4. [4]

      Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Nat. Mater. 2015, 14, 48.

    5. [5]

      Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Science 2014, 346, 1356.  doi: 10.1126/science.1254227

    6. [6]

      Liu, X. H.; Guan, C. Z.; Wang, D.; Wan, L. J. Adv. Mater. 2014, 26, 6912.  doi: 10.1002/adma.v26.40

    7. [7]

      Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. ACS Nano 2013, 7, 8066.  doi: 10.1021/nn403328h

    8. [8]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.  doi: 10.1021/cr200324t

    9. [9]

      Zhou, H.-C. J.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415.  doi: 10.1039/C4CS90059F

    10. [10]

      Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    11. [11]

      Dogru, M.; Bein, T. Chem. Commun. 2014, 50, 5531.  doi: 10.1039/C3CC46767H

    12. [12]

      Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.  doi: 10.1021/cr9900432

    13. [13]

      Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.  doi: 10.1039/b903811f

    14. [14]

      Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    15. [15]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.  doi: 10.1038/378703a0

    16. [16]

      Ding, S.-B.; Wang, W.; Qiu, L.-G.; Yuan, Y.-P.; Peng, F.-M.; Jiang, X.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. Mater. Lett. 2011, 65, 1385.  doi: 10.1016/j.matlet.2011.02.009

    17. [17]

      Wang, Y.; Cheng, L.; Liu, Z.-Y.; Wang, X.-G.; Ding, B.; Yin, L.; Zhou, B.-B.; Li, M.-S.; Wang, J.-X.; Zhao, X.-J. Chem.-Eur. J. 2015, 21, 14171.  doi: 10.1002/chem.201502167

    18. [18]

      Rachuri, Y.; Parmar, B.; Bisht, K. K.; Suresh, E. Dalton Trans. 2016, 45, 7881.  doi: 10.1039/C6DT00753H

    19. [19]

      Khatua, S.; Goswami, S.; Biswas, S.; Tomar, K.; Jena, H. S.; Konar, S. Chem. Mater. 2015, 27, 5349.  doi: 10.1021/acs.chemmater.5b01773

    20. [20]

      Ma, J.-P.; Yu, Y.; Dong, Y.-B. Chem. Commun. 2012, 48, 2946.  doi: 10.1039/C2CC16800F

    21. [21]

      Zhao, H.-Q.; Qiu, G.-H.; Liang, Z.; Li, M.-M.; Sun, B.; Qin, L.; Yang, S.-P.; Chen, W.-H.; Chen, J.-X. Anal. Chim. Acta 2016, 922, 55.  doi: 10.1016/j.aca.2016.03.054

    22. [22]

      Ye, T.; Liu, Y.; Luo, M.; Xiang, X.; Ji, X.; Zhou, G.; He, Z. Analyst 2014, 139, 1721.  doi: 10.1039/c3an02077k

    23. [23]

      Zhu, X.; Zheng, H.; Wei, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Chem. Commun. 2013, 49, 1276.  doi: 10.1039/c2cc36661d

    24. [24]

      Huang, P.; Mao, J.; Yang, L.; Yu, P.; Mao, L. Chem.-Eur. J. 2011, 17, 11390.  doi: 10.1002/chem.v17.41

    25. [25]

      Usov, P. M.; Fabian, C.; D'Alessandro, D. M. Chem. Commun. 2012, 48, 3945.  doi: 10.1039/c2cc30568b

    26. [26]

      Fernandes, D. M.; Barbosa, A. D.; Pires, J.; Balula, S. S.; Cunha-Silva, L.; Freire, C. ACS Appl. Mater. Interfaces 2013, 5, 13382.  doi: 10.1021/am4042564

    27. [27]

      Wu, X. Q.; Ma, J. G.; Li, H.; Chen, D. M.; Gu, W.; Yang, G. M.; Cheng, P. Chem. Commun. 2015, 51, 9161.  doi: 10.1039/C5CC02113H

    28. [28]

      Khan, I. A.; Badshah, A.; Nadeem, M. A.; Haider, N.; Nadeem, M. A. Int. J. Hydrogen Energy 2014, 39, 19609.  doi: 10.1016/j.ijhydene.2014.09.106

    29. [29]

      Ling, P.; Lei, J.; Zhang, L.; Ju, H. Anal. Chem. 2015, 87, 3957.  doi: 10.1021/acs.analchem.5b00001

    30. [30]

      Ling, P.; Lei, J.; Ju, H. Biosens. Bioelectron. 2015, 71, 373.  doi: 10.1016/j.bios.2015.04.046

    31. [31]

      Cui, L.; Wu, J.; Li, J.; Ju, H. Anal. Chem. 2015, 87, 10635.  doi: 10.1021/acs.analchem.5b03287

    32. [32]

      Shen, W. J.; Zhuo, Y.; Chai, Y. Q.; Yuan, R. Anal. Chem. 2015, 87, 11345.  doi: 10.1021/acs.analchem.5b02694

    33. [33]

      Yang, T.; Kong, Q.; Li, Q.; Wang, X.; Chen, L.; Jiao, K. ACS Appl. Mater. Interfaces 2014, 6, 11032.  doi: 10.1021/am502598k

    34. [34]

      Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Talanta 2015, 144, 1324.  doi: 10.1016/j.talanta.2015.08.004

    35. [35]

      Yang, T.; Chen, H.; Yang, R.; Jiang, Y.; Li, W.; Jiao, K. Microchim. Acta 2015, 182, 2623.  doi: 10.1007/s00604-015-1598-1

    36. [36]

      Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; Gómez-García, C. J.; Mateo-Martí, E.; Martínez, J. I.; Flores, F.; Gómez-Navarro, C.; Gómez-Herrero, J.; Delgado, S.; Delgado, S.; Zamora, F. Adv. Mater. 2013, 25, 2141.  doi: 10.1002/adma.201204676

    37. [37]

      Li, P. Z.; Maeda, Y.; Xu, Q. Chem. Commun. 2011, 47, 8436.  doi: 10.1039/c1cc12510a

    38. [38]

      Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565.  doi: 10.1038/nmat2769

    39. [39]

      Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 5640.  doi: 10.1021/ja110720f

    40. [40]

      Makiura, R.; Konovalov, O. Sci. Rep. 2013, 3, 2506.  doi: 10.1038/srep02506

    41. [41]

      Zhao, M.; Wang, Y.; Ma, Q.; Huang, Y.; Zhang, X.; Ping, J.; Zhang, Z.; Lu, Q.; Yu, Y.; Xu, H.; Zhao, Y.; Zhang, H. Adv. Mater. 2015, 27, 7372.  doi: 10.1002/adma.201503648

    42. [42]

      Li, S.; Huang, X.; Zhang, H. Acta Chim. Sinica 2015, 73, 913.  doi: 10.3866/PKU.WHXB201503162
       

    43. [43]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 7241.  doi: 10.1021/ja502643p

    44. [44]

      Zhang, S. R.; Du, D. Y.; Qin, J. S.; Bao, S. J.; Li, S. L.; He, W. W.; Lan, Y. Q.; Shen, P.; Su, Z. M. Chem. Eur. J. 2014, 20, 3589.  doi: 10.1002/chem.v20.13

    45. [45]

      Hu, X. L.; Liu, F. H.; Qin, C.; Shao, K. Z.; Su, Z. M. Dalton Trans. 2015, 44, 7822.  doi: 10.1039/C5DT00515A

    46. [46]

      Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. J. Mater. Chem. A 2016, 4, 10900.  doi: 10.1039/C6TA03065C

    47. [47]

      Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Angew. Chem. Int. Ed. 2015, 54, 4349.  doi: 10.1002/anie.201411854

    48. [48]

      Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 13780.  doi: 10.1021/jacs.5b09600

    49. [49]

      Wang, Y.; Zhao, M.; Ping, J.; Chen, B.; Cao, X.; Huang, Y.; Tan, C.; Ma, Q.; Wu, S.; Yu, Y.; Lu, Q.; Chen, J.; Zhao, W.; Ying, Y.; Zhang, H. Adv. Mater. 2016, 28, 4149.  doi: 10.1002/adma.v28.21

    50. [50]

      Yang, T.; Meng, L.; Chen, H.; Luo, S.; Li, W.; Jiao, K. Adv. Mater. Interfaces 2016, 1500700.

    51. [51]

      Yang, T.; Chen, M.; Kong, Q.; Luo, X.; Jiao, K. Biosens. Bioelectron. 2017, 89, 538.  doi: 10.1016/j.bios.2016.03.025

    52. [52]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    53. [53]

      Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Côté, A. P; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 11872.  doi: 10.1021/ja805064f

    54. [54]

      Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.  doi: 10.1021/ja308278w

    55. [55]

      Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    56. [56]

      Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328.  doi: 10.1021/ja4017842

    57. [57]

      Zhou, B.; Chen, L. Acta Chim. Sinica 2015, 73, 487.
       

    58. [58]

      Liu, X.; Guo, J.; Feng, X.; Dong, J. Science Foundation in China 2014, 28, 330.

    59. [59]

      Zhang, W.; Qiu, L. G.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2012, 221, 147.

    60. [60]

      Kaleeswaran, D.; Vishnoi, P.; Murugavel, R. J. Mater. Chem. C 2015, 3, 7159.  doi: 10.1039/C5TC00670H

    61. [61]

      Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 17310.  doi: 10.1021/ja4103293

    62. [62]

      Cai, S. L.; Zhang, W. G.; Zuckermann, R. N.; Li, Z. T.; Zhao, X.; Liu, Y. Adv. Mater. 2015, 27, 5762.  doi: 10.1002/adma.v27.38

    63. [63]

      Xiang, Z.; Cao, D.; Dai, L. Polym. Chem. 2015, 6, 1896.  doi: 10.1039/C4PY01383B

    64. [64]

      Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Small 2011, 7, 1207.  doi: 10.1002/smll.v7.9

    65. [65]

      Berlanga, I.; Mas-Ballesté, R.; Zamora, F. Chem. Commun. 2012, 48, 7976.  doi: 10.1039/c2cc32187d

    66. [66]

      Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952.  doi: 10.1021/ja408243n

    67. [67]

      Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chem. Sci. 2015, 6, 3931.  doi: 10.1039/C5SC00512D

    68. [68]

      Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 17853.  doi: 10.1021/ja408121p

    69. [69]

      Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.  doi: 10.1126/science.1202747

    70. [70]

      Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470.  doi: 10.1021/ja403464h

    71. [71]

      Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; Zhang, D. Chem. Eur. J. 2014, 20, 14614.  doi: 10.1002/chem.v20.45

    72. [72]

      Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208.  doi: 10.1126/science.aac8343

    73. [73]

      DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 16821.  doi: 10.1021/ja409421d

    74. [74]

      DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Ro-dríguez-Calero, G. G.; Bisbey, R. P.; Abruna, H. D.; Dichtel, W. R. ACS Nano 2015, 9, 3178.  doi: 10.1021/acsnano.5b00184

    75. [75]

      Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.  doi: 10.1038/srep08225

    76. [76]

      Xu, L.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S.; Liu, Z. F. Angew. Chem. Int. Ed. 2014, 53, 9564.  doi: 10.1002/anie.201400273

    77. [77]

      Zha, Z.; Xu, L.; Wang, Z.; Li, X.; Pan, Q.; Hu, P.; Lei, S. ACS Appl. Mater. Interfaces 2015, 7, 17837.  doi: 10.1021/acsami.5b04185

    78. [78]

      Wang, P.; Kang, M.; Sun, S.; Liu, Q.; Zhang, Z.; Fang, S. Chin. J. Chem. 2014, 32, 838.  doi: 10.1002/cjoc.201400260

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(89)
  • Abstract views(4183)
  • HTML views(1129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return