Citation: Yang Tao, Cui Yanan, Chen Huaiyin, Li Weihua. Controllable Preparation of Two Dimensional Metal-or Covalent Organic Frameworks for Chemical Sensing and Biosensing[J]. Acta Chimica Sinica, ;2017, 75(4): 339-350. doi: 10.6023/A16110592 shu

Controllable Preparation of Two Dimensional Metal-or Covalent Organic Frameworks for Chemical Sensing and Biosensing

  • Corresponding author: Li Weihua, ytlwh666@163.com
  • Received Date: 9 November 2016

    Fund Project: Marine Science and Technology Projects of Huangdao District 2014-4-1the National Natural Science Foundation of China 41476083863 program 2015AA034404the National Natural Science Foundation of China 21275084the National Natural Science Foundation of China 51525903the National Natural Science Foundation of China 21675092

Figures(17)

  • In recent years, with the continuously deep and expanded researches of two-dimensional (2D) nanomaterials rep-resented by graphene, 2D framework materials represented by 2D metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great research interests and extensive attention. Compared with other mesoporous or mi-croporous nanomaterials, these organic framework materials provide uniformly nano-sized pores. And as compared to graphene, 2D organic framework materials can be expected to design and assemble the functionalized building units. For example, carboxyl group, amino group, hydroxyl group, etc. can be grafted onto the frameworks through various chemical reactions. These advantages are hopeful to make 2D organic framework materials a new generation of functional materials to improve the sensitivity and stability of the sensing interfaces. This review simply summarized 2D MOFs and COFs respectively, and generalized the current methods for preparing 2D MOFs and COFs nanomaterials based on "bottom-up" and "top-down" strategies and made simple comments. In addition, the applications of (2D) MOFs and COFs materials in chemical sensing and biosensing fields were introduced, and the potential and key problems of 2D MOFs and COFs in sensing applications were also discussed. And at last, this review gives some outlook for the future applications of 2D MOFs and COFs nanomaterials.
  • 加载中
    1. [1]

      Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 113, 3766.  doi: 10.1021/cr300263a

    2. [2]

      He, X.; Liu, F.; Zeng, Q.; Liu, Z. Acta Chim. Sinica 2015, 73, 924.
       

    3. [3]

      Wee, A. T. S. ACS Nano 2013, 7, 5649.  doi: 10.1021/nn403389h

    4. [4]

      Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Nat. Mater. 2015, 14, 48.

    5. [5]

      Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Science 2014, 346, 1356.  doi: 10.1126/science.1254227

    6. [6]

      Liu, X. H.; Guan, C. Z.; Wang, D.; Wan, L. J. Adv. Mater. 2014, 26, 6912.  doi: 10.1002/adma.v26.40

    7. [7]

      Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. ACS Nano 2013, 7, 8066.  doi: 10.1021/nn403328h

    8. [8]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.  doi: 10.1021/cr200324t

    9. [9]

      Zhou, H.-C. J.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415.  doi: 10.1039/C4CS90059F

    10. [10]

      Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    11. [11]

      Dogru, M.; Bein, T. Chem. Commun. 2014, 50, 5531.  doi: 10.1039/C3CC46767H

    12. [12]

      Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.  doi: 10.1021/cr9900432

    13. [13]

      Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.  doi: 10.1039/b903811f

    14. [14]

      Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    15. [15]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.  doi: 10.1038/378703a0

    16. [16]

      Ding, S.-B.; Wang, W.; Qiu, L.-G.; Yuan, Y.-P.; Peng, F.-M.; Jiang, X.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. Mater. Lett. 2011, 65, 1385.  doi: 10.1016/j.matlet.2011.02.009

    17. [17]

      Wang, Y.; Cheng, L.; Liu, Z.-Y.; Wang, X.-G.; Ding, B.; Yin, L.; Zhou, B.-B.; Li, M.-S.; Wang, J.-X.; Zhao, X.-J. Chem.-Eur. J. 2015, 21, 14171.  doi: 10.1002/chem.201502167

    18. [18]

      Rachuri, Y.; Parmar, B.; Bisht, K. K.; Suresh, E. Dalton Trans. 2016, 45, 7881.  doi: 10.1039/C6DT00753H

    19. [19]

      Khatua, S.; Goswami, S.; Biswas, S.; Tomar, K.; Jena, H. S.; Konar, S. Chem. Mater. 2015, 27, 5349.  doi: 10.1021/acs.chemmater.5b01773

    20. [20]

      Ma, J.-P.; Yu, Y.; Dong, Y.-B. Chem. Commun. 2012, 48, 2946.  doi: 10.1039/C2CC16800F

    21. [21]

      Zhao, H.-Q.; Qiu, G.-H.; Liang, Z.; Li, M.-M.; Sun, B.; Qin, L.; Yang, S.-P.; Chen, W.-H.; Chen, J.-X. Anal. Chim. Acta 2016, 922, 55.  doi: 10.1016/j.aca.2016.03.054

    22. [22]

      Ye, T.; Liu, Y.; Luo, M.; Xiang, X.; Ji, X.; Zhou, G.; He, Z. Analyst 2014, 139, 1721.  doi: 10.1039/c3an02077k

    23. [23]

      Zhu, X.; Zheng, H.; Wei, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Chem. Commun. 2013, 49, 1276.  doi: 10.1039/c2cc36661d

    24. [24]

      Huang, P.; Mao, J.; Yang, L.; Yu, P.; Mao, L. Chem.-Eur. J. 2011, 17, 11390.  doi: 10.1002/chem.v17.41

    25. [25]

      Usov, P. M.; Fabian, C.; D'Alessandro, D. M. Chem. Commun. 2012, 48, 3945.  doi: 10.1039/c2cc30568b

    26. [26]

      Fernandes, D. M.; Barbosa, A. D.; Pires, J.; Balula, S. S.; Cunha-Silva, L.; Freire, C. ACS Appl. Mater. Interfaces 2013, 5, 13382.  doi: 10.1021/am4042564

    27. [27]

      Wu, X. Q.; Ma, J. G.; Li, H.; Chen, D. M.; Gu, W.; Yang, G. M.; Cheng, P. Chem. Commun. 2015, 51, 9161.  doi: 10.1039/C5CC02113H

    28. [28]

      Khan, I. A.; Badshah, A.; Nadeem, M. A.; Haider, N.; Nadeem, M. A. Int. J. Hydrogen Energy 2014, 39, 19609.  doi: 10.1016/j.ijhydene.2014.09.106

    29. [29]

      Ling, P.; Lei, J.; Zhang, L.; Ju, H. Anal. Chem. 2015, 87, 3957.  doi: 10.1021/acs.analchem.5b00001

    30. [30]

      Ling, P.; Lei, J.; Ju, H. Biosens. Bioelectron. 2015, 71, 373.  doi: 10.1016/j.bios.2015.04.046

    31. [31]

      Cui, L.; Wu, J.; Li, J.; Ju, H. Anal. Chem. 2015, 87, 10635.  doi: 10.1021/acs.analchem.5b03287

    32. [32]

      Shen, W. J.; Zhuo, Y.; Chai, Y. Q.; Yuan, R. Anal. Chem. 2015, 87, 11345.  doi: 10.1021/acs.analchem.5b02694

    33. [33]

      Yang, T.; Kong, Q.; Li, Q.; Wang, X.; Chen, L.; Jiao, K. ACS Appl. Mater. Interfaces 2014, 6, 11032.  doi: 10.1021/am502598k

    34. [34]

      Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Talanta 2015, 144, 1324.  doi: 10.1016/j.talanta.2015.08.004

    35. [35]

      Yang, T.; Chen, H.; Yang, R.; Jiang, Y.; Li, W.; Jiao, K. Microchim. Acta 2015, 182, 2623.  doi: 10.1007/s00604-015-1598-1

    36. [36]

      Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; Gómez-García, C. J.; Mateo-Martí, E.; Martínez, J. I.; Flores, F.; Gómez-Navarro, C.; Gómez-Herrero, J.; Delgado, S.; Delgado, S.; Zamora, F. Adv. Mater. 2013, 25, 2141.  doi: 10.1002/adma.201204676

    37. [37]

      Li, P. Z.; Maeda, Y.; Xu, Q. Chem. Commun. 2011, 47, 8436.  doi: 10.1039/c1cc12510a

    38. [38]

      Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565.  doi: 10.1038/nmat2769

    39. [39]

      Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 5640.  doi: 10.1021/ja110720f

    40. [40]

      Makiura, R.; Konovalov, O. Sci. Rep. 2013, 3, 2506.  doi: 10.1038/srep02506

    41. [41]

      Zhao, M.; Wang, Y.; Ma, Q.; Huang, Y.; Zhang, X.; Ping, J.; Zhang, Z.; Lu, Q.; Yu, Y.; Xu, H.; Zhao, Y.; Zhang, H. Adv. Mater. 2015, 27, 7372.  doi: 10.1002/adma.201503648

    42. [42]

      Li, S.; Huang, X.; Zhang, H. Acta Chim. Sinica 2015, 73, 913.  doi: 10.3866/PKU.WHXB201503162
       

    43. [43]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 7241.  doi: 10.1021/ja502643p

    44. [44]

      Zhang, S. R.; Du, D. Y.; Qin, J. S.; Bao, S. J.; Li, S. L.; He, W. W.; Lan, Y. Q.; Shen, P.; Su, Z. M. Chem. Eur. J. 2014, 20, 3589.  doi: 10.1002/chem.v20.13

    45. [45]

      Hu, X. L.; Liu, F. H.; Qin, C.; Shao, K. Z.; Su, Z. M. Dalton Trans. 2015, 44, 7822.  doi: 10.1039/C5DT00515A

    46. [46]

      Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. J. Mater. Chem. A 2016, 4, 10900.  doi: 10.1039/C6TA03065C

    47. [47]

      Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Angew. Chem. Int. Ed. 2015, 54, 4349.  doi: 10.1002/anie.201411854

    48. [48]

      Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 13780.  doi: 10.1021/jacs.5b09600

    49. [49]

      Wang, Y.; Zhao, M.; Ping, J.; Chen, B.; Cao, X.; Huang, Y.; Tan, C.; Ma, Q.; Wu, S.; Yu, Y.; Lu, Q.; Chen, J.; Zhao, W.; Ying, Y.; Zhang, H. Adv. Mater. 2016, 28, 4149.  doi: 10.1002/adma.v28.21

    50. [50]

      Yang, T.; Meng, L.; Chen, H.; Luo, S.; Li, W.; Jiao, K. Adv. Mater. Interfaces 2016, 1500700.

    51. [51]

      Yang, T.; Chen, M.; Kong, Q.; Luo, X.; Jiao, K. Biosens. Bioelectron. 2017, 89, 538.  doi: 10.1016/j.bios.2016.03.025

    52. [52]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    53. [53]

      Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Côté, A. P; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 11872.  doi: 10.1021/ja805064f

    54. [54]

      Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.  doi: 10.1021/ja308278w

    55. [55]

      Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    56. [56]

      Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328.  doi: 10.1021/ja4017842

    57. [57]

      Zhou, B.; Chen, L. Acta Chim. Sinica 2015, 73, 487.
       

    58. [58]

      Liu, X.; Guo, J.; Feng, X.; Dong, J. Science Foundation in China 2014, 28, 330.

    59. [59]

      Zhang, W.; Qiu, L. G.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2012, 221, 147.

    60. [60]

      Kaleeswaran, D.; Vishnoi, P.; Murugavel, R. J. Mater. Chem. C 2015, 3, 7159.  doi: 10.1039/C5TC00670H

    61. [61]

      Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 17310.  doi: 10.1021/ja4103293

    62. [62]

      Cai, S. L.; Zhang, W. G.; Zuckermann, R. N.; Li, Z. T.; Zhao, X.; Liu, Y. Adv. Mater. 2015, 27, 5762.  doi: 10.1002/adma.v27.38

    63. [63]

      Xiang, Z.; Cao, D.; Dai, L. Polym. Chem. 2015, 6, 1896.  doi: 10.1039/C4PY01383B

    64. [64]

      Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Small 2011, 7, 1207.  doi: 10.1002/smll.v7.9

    65. [65]

      Berlanga, I.; Mas-Ballesté, R.; Zamora, F. Chem. Commun. 2012, 48, 7976.  doi: 10.1039/c2cc32187d

    66. [66]

      Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952.  doi: 10.1021/ja408243n

    67. [67]

      Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chem. Sci. 2015, 6, 3931.  doi: 10.1039/C5SC00512D

    68. [68]

      Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 17853.  doi: 10.1021/ja408121p

    69. [69]

      Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.  doi: 10.1126/science.1202747

    70. [70]

      Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470.  doi: 10.1021/ja403464h

    71. [71]

      Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; Zhang, D. Chem. Eur. J. 2014, 20, 14614.  doi: 10.1002/chem.v20.45

    72. [72]

      Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208.  doi: 10.1126/science.aac8343

    73. [73]

      DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 16821.  doi: 10.1021/ja409421d

    74. [74]

      DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Ro-dríguez-Calero, G. G.; Bisbey, R. P.; Abruna, H. D.; Dichtel, W. R. ACS Nano 2015, 9, 3178.  doi: 10.1021/acsnano.5b00184

    75. [75]

      Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.  doi: 10.1038/srep08225

    76. [76]

      Xu, L.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S.; Liu, Z. F. Angew. Chem. Int. Ed. 2014, 53, 9564.  doi: 10.1002/anie.201400273

    77. [77]

      Zha, Z.; Xu, L.; Wang, Z.; Li, X.; Pan, Q.; Hu, P.; Lei, S. ACS Appl. Mater. Interfaces 2015, 7, 17837.  doi: 10.1021/acsami.5b04185

    78. [78]

      Wang, P.; Kang, M.; Sun, S.; Liu, Q.; Zhang, Z.; Fang, S. Chin. J. Chem. 2014, 32, 838.  doi: 10.1002/cjoc.201400260

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    20. [20]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

Metrics
  • PDF Downloads(90)
  • Abstract views(4237)
  • HTML views(1136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return