Citation: Yang Zhongbo, Li Sujia, Luo Sanzhong. Total Synthesis of (±)-Hongoquercin A via Visible-Light-Mediated Organocatalytic Polyene Cyclization[J]. Acta Chimica Sinica, ;2017, 75(4): 351-354. doi: 10.6023/A16110591 shu

Total Synthesis of (±)-Hongoquercin A via Visible-Light-Mediated Organocatalytic Polyene Cyclization

  • Corresponding author: Luo Sanzhong, luosz@iccas.ac.cn
  • Received Date: 8 November 2016

Figures(3)

  • Advances in the strategy and methodology of visible light photocatalysis have begun to alter the way how organic chemists address the synthetic problems. These powerful methods have enabled the development of novel reaction schemes and approaches (mostly via radical path) for the total synthesis of nature products under visible light photoredox catalysis. Terpenoids, possessing intriguing biological activities together with their structural diversity, have remained as attractive targets for chemists. On the basis of their biogenetic pathways, polyene cyclization is the most straightforward pathway to attain terpenoid skeletons. Most recently, a few examples of stereoselective radical polyene cyclizations have been developed. However, most of the radical approaches suffer from the requirement for stoichiometric loading of metals or radical initiators. And in many cases, low yields are obtained with complicated reaction mixtures, which cumber further development along this line especially in nature products synthesis. In our previous work, we have developed a visible-light-mediated, stereoselective organocatalytic cyclization of polyenes. The wide scope as well as the high chemoselectivity inspires us to apply this method in the total synthesis of terpenoid natural products. Thus we report here total synthesis of (±)-Hongoquercin A (1), starting from trans, trans-farnesol (4) in 7 steps and with overall 14.4% yield. Our developed visible-light-mediated redox organocatalytic methodology is employed as the key step to construct multiple ring-fused skeleton of 1 in one step.[To a flame-dried Schlenk tube equipped with a magnetic stir bar was added 3-hydroxy-5-methyl-2-((2E, 6E)-3, 7, 11-trimethyl-dodeca-2, 6, 10-trien-1-yl) cyclohex-2-enone (3) (0.20 g, 0.61 mmol) and Eosin Y (4.0 mg, 0.0061 mmol). The mixture was diluted with 1.5 mL of anhydrous hexafluoroisopropanol. The reaction was irradiated with Green LEDs at room temperature for 2 h. Upon completion, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel chromatography (10% EtOAc in Petroleum ether) to give 2 (ca. 60% yield, colorless oil) containing all the skeleton carbons of Hongoquercin A.
  • 加载中
    1. [1]

      (a) Nicolaou, K. C.; Vourloumis, D.; Wissinger, N.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 44.(b) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551.(c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.(d) Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.

    2. [2]

      For a recent review, see:(a) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730; For early contributions, see:(b) Johnson, W. S.; Kinnel, R. B. J. Am. Chem. Soc. 1966, 88, 3861.(c) Tamelen, E. E. V.; McCormick, J. P. J. Am. Chem. Soc. 1969, 91, 1847.

    3. [3]

      For selected examples in this field, see:(a) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906.(b) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2001, 123, 1505.(c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122.(d) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2012, 134, 11992.(e) Zhao, Y.-J.; Li, B.; Tan, L.-J. S.; Shen, Z.-L.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 10242.(f) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.(g) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.(h) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030.(i) Mullen, C. A.; Campbell, A. N.; Gagn, M. R. Angew. Chem. Int. Ed. 2008, 47, 6011.(j) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276.(k) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276.

    4. [4]

      For a recent review, see:(a) Justicia, J.; Álvarez de Cienfuegos, L.; Campaña, A. G.; Miguel, D.; Jakoby, V.; Gansäuer, A.; Cuerva, J. M. Chem. Soc. Rev. 2011, 40, 3525. For selected examples, see:(b) Rendeler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.(c) Handa, S.; Pattenden, G. J. Chem. Soc., Perkin Trans. 11999, 843.(d) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427.(e) Zoretic, P. A.; Fang, H.; Ribeiro, A. A. J. Org. Chem. 1998, 63, 4779.(f) Morcillo, S. P.; Miguel, D.; Resa, S.; Martín-Lasanta, A.; Millán, A.; Choquesillo-Lazarte, D.; Gar-cía-Ruiz, J. M.; Mota, A. J.; Justicia, J.; Cuerva, J. M. J. Am. Chem. Soc. 2014, 136, 6943.(g) Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y.; Yang, D. Angew. Chem. Int. Ed. 2002, 41, 3014.(h) Heinemann, C.; Demuth, M. J. Am. Chem. Soc. 1999, 121, 4894.(i) Bunte, J. O.; Rinne, S.; Schäfer, C.; Neumann, B.; Stammlerb, H.-G.; Mattaya, J. Tetrahedron Lett. 2003, 44, 45.

    5. [5]

    6. [6]

    7. [7]

      Yang, Z.; Li, H.; Zhang, L.; Zhang, M.-T.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2015, 21, 14723.  doi: 10.1002/chem.201503118

    8. [8]

      (a) Roll, D. M.; Manning, J. K.; Carter, G. T. J. Antibiot. 1998, 51, 635. For fermentation studies, see:(b) Abbanat, D. A.; Singh, M. P.; Greenstein, M. J. Antibiot. 1998, 51, 708.

    9. [9]

      Tsujimori, H.; Bando, M.; Mori, K. Eur. J. Org. Chem. 2000, 297.

    10. [10]

      Kurdyumov, A. V.; Hsung, R. P. J. Am. Chem. Soc. 2006, 128, 6272.  doi: 10.1021/ja054872i

    11. [11]

      Rosen, B. R.; Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu, J.-Q.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 7317.  doi: 10.1002/anie.201303838

    12. [12]

      For reviews on the field of photochemical reactions as key steps in natural product synthesis, see:(a) Bach, T.; Hehn. J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.(b) Hoffmann. N. Chem. Rev. 2008, 108, 1052.(c) Iriondo-Alberdi, J.; Greaney, M. F. Eur. J. Org. Chem. 2007, 4801.

    13. [13]

      For recently selected examples on the field of applications of DDQ as aromatization reagent in natural product synthesis, see:(a) Li, H.; Chen, Q.; Lu, Z.; Li, A. J. Am. Chem. Soc. 2016, 138, 15555.(b) Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A. Angew. Chem. Int. Ed. 2016, 55, 6964.(c) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem. Int. Ed. 2015, 54, 6878.

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(25)
  • Abstract views(1223)
  • HTML views(246)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return