Citation: Wang Bin, Wang Jianfu, Zhang Xiaofei, Chen Wenjie, Zhang Yongfan, Huang Xin. Theoretical Investigations on the Structures and the Chemical Bonding of NbMoSn-/0 (n=3~7) Clusters[J]. Acta Chimica Sinica, ;2017, 75(3): 307-320. doi: 10.6023/A16110578 shu

Theoretical Investigations on the Structures and the Chemical Bonding of NbMoSn-/0 (n=3~7) Clusters

  • Corresponding author: Wang Bin, wangbin_100@fzu.edu.cn
  • Received Date: 1 November 2016

    Fund Project: the National Natural Science Foundation of China 21371034the National Natural Science Foundation of China 21603117the Natural Science Foundation of Fuzhou University 2012-XY-6the National Natural Science Foundation of China 21373048the National Natural Science Foundation of China 21301030

Figures(15)

  • Recently, transition metal sulfides (TMS) have played an important role in many catalytic reactions. In particular, they are widely used in the petrochemical industry, such as the hydrodesulfurization (HDS) and the hydrodenitrogenation (HDN) processes. In this work, density functional theory (DFT) and coupled cluster theory[CCSD (T)] calculations were used to study the niobium-mixed di-nuclear molybdenum sulfide clusters NbMoSn-/0(n=3~7). In our calculations, their ground-state structures were determined and the effects of doping metal, adjusting the sulfur content (n) and changing the charge states of clusters were discussed on the geometries, electronic structures and chemical bonding of NbMoSn-/0(n=3~7). NbMoSn-/0(n=3~7) clusters can be viewed as linking different sulfur ligands to the NbMoS2 four-membered rings. Among them, diverse poly-sulfur ligands, such as bridging S2, terminal S2 and terminal S3 groups, emerged in the sulfur-rich clusters. Generalized Koopmans' Theorem was employed to predict the vertical detachment energies (VDEs), and simulate the corresponding anionic photoelectron spectra (PES). The first VDEs (VDE1st) of NbMoSn-(n=3~6) increased gradually as a function of n, and then decreased suddenly when the sulfur content (n) reached 7. The VDE1st reached the maximum by 4.69 eV when the sulfur content equaled to 6. The driving forces (-ΔG) of the reduction reactions between NbMoSn-/0(n=3~7) and H2 were evaluated. The NbMoS7- anion with the terminal S22- group yielded the negative value of ΔG, which indicated that the reaction is thermodynamically favored even at the room temperature. We predicted that doping niobium into the molybdenum sulfides may improve the emergence of S2 group which may be helpful in producing the coordinatively unsaturated sites (CUS) under the H2/H2S atmosphere. Molecular orbital analyses are performed to improve our understanding on the structural evolution and the chemical bonding of NbMoSn-/0(n=3~7) clusters.
  • 加载中
    1. [1]

      Shi, J. P.; Ma, D. L.; Zhang, Y. F.; Liu, Z. F. Acta Chim. Sinica 2015, 73, 877.  doi: 10.6023/A15030157
       

    2. [2]

      Transition Metal Sulfur Chemistry:Biological and Industrial Significance, Eds.:Stiefel, E. I.; Matsumoto, K., American Chemical Society, Washington, 1996.

    3. [3]

      Lee, S. C.; Li, J.; Mitchell, J. C.; Holm, R. H. Inorg. Chem. 1992, 31, 4333.  doi: 10.1021/ic00047a021

    4. [4]

      Nasretdinova, V.; Zaitsev-Zotov, S. Physica B 2012, 407, 1874.  doi: 10.1016/j.physb.2012.01.052

    5. [5]

      Wang, Q.; Zhao, J.; Wang, X. F. J. Phys. Chem. A 2015, 119, 2244.  doi: 10.1021/jp5054106

    6. [6]

      Pettarin, V.; Churruca, M. J.; Felhos, D.; Karger-Kocsis, J.; Frontini, P. M. Wear 2010, 269, 31.  doi: 10.1016/j.wear.2010.03.006

    7. [7]

      Basharina, K. Y.; Terekhin, D. V.; Kuz'mina, G. N.; Bordubanova, A. E.; Ezhov, G. A.; Parenago, O. P. Petrol. Chem. 2009, 49, 339.  doi: 10.1134/S0965544109040148

    8. [8]

      Chhowalla, M.; Amaratunga, G. A. J. Nature (London) 2000, 407, 164.  doi: 10.1038/35025020

    9. [9]

      Ye, L. N.; Wu, C. Z.; Guo, W.; Xie, Y. Chem. Commun. 2006, 45, 4738.

    10. [10]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.  doi: 10.1021/cr1002326

    11. [11]

      Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.  doi: 10.1126/science.1141483

    12. [12]

      Tian, Y.; He, Y.; Shang, J.; Zhu, Y. F. Acta Chim. Sinica 2004, 62, 1807.
       

    13. [13]

      Xing, L.; Jiao, L. Y. Acta Phys.-Chim. Sin. 2016, 32, 2133.

    14. [14]

      Raybaud, P.; Hafner, J.; Kresse, G.; Kasztelan, S.; Toulhoat, H. J. Catal. 2000, 189, 129.  doi: 10.1006/jcat.1999.2698

    15. [15]

      Toulhoat, H.; Raybaud, P.; Kasztelan, S.; Kresse, G.; Hafner, J. Catal. Today 1999, 50, 629.  doi: 10.1016/S0920-5861(98)00497-0

    16. [16]

      Jaramillo, T. F. Nature Chem. 2014, 6, 248.  doi: 10.1038/nchem.1853

    17. [17]

      Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.  doi: 10.1126/science.1141483

    18. [18]

      Guo, X.; Tong, X.; Wang, Y.; Chen, C.; Jin, G.; Guo, X. Y. J. Mater. Chem. A 2013, 1, 4657.  doi: 10.1039/c3ta10600d

    19. [19]

      Liao, L.; Zhu, J.; Bian, X.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. Adv. Funct. Mater. 2013, 23, 5326.  doi: 10.1002/adfm.v23.42

    20. [20]

      Kockerling, M.; Johrendt, D.; Finckh, E. W. J. Am. Chem. Soc. 1998, 120, 12297.  doi: 10.1021/ja982081t

    21. [21]

      Hernandez-Molina, R.; Gili, P.; Sokolov, M. N.; Safont, V. S. Inorg. Chim. Acta 2011, 376, 10.  doi: 10.1016/j.ica.2011.05.023

    22. [22]

      Liao, Y. H.; Park, K. S.; Singh, P.; Li, W.; Goodenough, J. B. J. Power Sources 2014, 245, 27.  doi: 10.1016/j.jpowsour.2013.06.048

    23. [23]

      Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. J. Phys. D:Appl. Phys. 1990, 23, 966.  doi: 10.1088/0022-3727/23/7/035

    24. [24]

      Oviedo-Roa, R.; Martinez-Magadan, J. M.; Illas, F. J. Phys. Chem. B 2006, 110, 7951.  doi: 10.1021/jp052299j

    25. [25]

      Lewis, D. A.; Kenney, C. N. Trans. Inst. Chem. Eng. 1981, 59, 186.

    26. [26]

      Aray, Y.; Zambrano, D.; Cornejo, M. H.; Ludeña, E. V.; Iza, P.; Vidal, A. B.; Coll, D. S.; Jimenez, D. M.; Henriquez, F.; Paredes, C. J. Phys. Chem. C 2014, 118, 27823.  doi: 10.1021/jp5059269

    27. [27]

      Allali, N.; Marie, A. M.; Danot, M.; Geantet, C.; Breysse, M. J. Catal. 1995, 156, 279.  doi: 10.1006/jcat.1995.1255

    28. [28]

      Geantet, C.; Afonso, J.; Breysse, M.; Danot, M. Catal. Today 1996, 28, 23.  doi: 10.1016/0920-5861(95)00215-4

    29. [29]

      Allali, N.; Prouzet, E.; Michalowicz, A.; Gaborit, V.; Nadiri, A.; Danot, M. Appl. Catal. A-GEN. 1997, 159, 333.  doi: 10.1016/S0926-860X(97)00069-0

    30. [30]

      Cattenot, M.; Portefaix, J. L.; Afonso, J.; Breysse, M.; Lacroix, M.; Perot, G. J. Catal. 1998, 173, 366.  doi: 10.1006/jcat.1997.1929

    31. [31]

      Danot, M.; Afonso, J.; Portefaix, J. L.; Breysse, M.; Courieres, T. D. Catal. Today 1991, 10, 629.  doi: 10.1016/0920-5861(91)80043-9

    32. [32]

      Afanasiev, P.; Bezverkhyy, I. Appl. Catal. A-GEN. 2007, 322, 129.  doi: 10.1016/j.apcata.2007.01.015

    33. [33]

      Gaborit, V.; Allali, N.; Geantet, C.; Breysse, M.; Vrinat, M.; Danotl, M. Catal. Today 2000, 57, 267.  doi: 10.1016/S0920-5861(99)00336-3

    34. [34]

      Chai, Y. M.; An, G. J.; Liu, Y. Q.; Liu, C. G. Prog. Chem. 2007, 19, 234.

    35. [35]

      Besenbacher, F.; Brorson, M.; Clausen, B. S.; Helveg, S.; Hinnemann, B.; Kibsgaard, J.; Lauritsen, J. V.; Moses, P. G.; Nørskovc, J. K.; Topsøe, H. Catal. Today 2008, 130, 86.  doi: 10.1016/j.cattod.2007.08.009

    36. [36]

      Drescher, T.; Niefind, F.; Bensch, W.; Grünert, W. J. Am. Chem. Soc. 2012, 134, 18896.  doi: 10.1021/ja3074903

    37. [37]

      Prodhomme, P. Y.; Raybaud, P.; Toulhoat, H. J. Catal. 2011, 280, 178.  doi: 10.1016/j.jcat.2011.03.017

    38. [38]

      Dinter, N.; Rusanen, M.; Raybaud, P.; Kasztelan, S.; Silva, P.; Toulhoat, H. J. Catal. 2010, 275, 117.  doi: 10.1016/j.jcat.2010.07.020

    39. [39]

      Lauritsen, J. V.; Nyberg, M.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E.; Besenbacher, F. J. Catal. 2004, 224, 94.  doi: 10.1016/j.jcat.2004.02.009

    40. [40]

      Wen, X. D.; Zeng, T.; Li, Y. W.; Wang, J.; Jiao, H. J. Phys. Chem. B 2005, 109, 18491.  doi: 10.1021/jp051540r

    41. [41]

      Lu, J. X. Chinese J. Struct. Chem. 1989, 5, 327.

    42. [42]

      Huang, R. B.; Zhang, P.; Zhu, Y. B.; Zheng, L. S. Acta Phys-Chim. Sin. 1991, 8, 8.
       

    43. [43]

      Popov, I.; Kunze, T.; Gemming, S.; Seifert, G. Eur. Phys. J. D. 2007, 45, 439.  doi: 10.1140/epjd/e2007-00170-1

    44. [44]

      Popov, I.; Gemming, S.; Seifert, G. Phys. Rev. B 2007, 75, 245436.  doi: 10.1103/PhysRevB.75.245436

    45. [45]

      Seifert, G.; Tamuliene, J.; Gemming, S. Comput. Mater. Sci. 2006, 35, 316.  doi: 10.1016/j.commatsci.2004.08.014

    46. [46]

      Gemming, S.; Seifert, G. Appl. Phys. A 2006, 82, 175.

    47. [47]

      Jiao, H. J.; Li, Y. W.; Delmon, B.; Halet, J. F. J. Am. Chem. Soc. 2001, 123, 7334.  doi: 10.1021/ja0034085

    48. [48]

      Bertram, N.; Kim, Y. D.; Ganteför, G.; Sun, Q.; Jena, P.; Tamliene, J.; Seifert, G. Chem. Phys. Lett. 2004, 396, 341.  doi: 10.1016/j.cplett.2004.08.057

    49. [49]

      Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 3738.  doi: 10.1021/jp013790n

    50. [50]

      Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 6945.  doi: 10.1021/jp025915+

    51. [51]

      Yu, S. W.; Yin, L. Q.; Yao, L. F.; Li, M.; Xie, X. G. Chin. Chem. Lett. 2008, 19, 1008.  doi: 10.1016/j.cclet.2008.05.029

    52. [52]

      Yin, S.; Xie, Y.; Bernstein, E. R. J. Phys. Chem. A 2011, 115, 10266.  doi: 10.1021/jp2056267

    53. [53]

      Saha, A.; Raghavachari, K. J. Chem. Phys. 2013, 139, 204301.  doi: 10.1063/1.4830096

    54. [54]

      Saha, A.; Raghavachari, K. J. Chem. Phys. 2014, 141, 074305.  doi: 10.1063/1.4892671

    55. [55]

      Afanasiev, P.; Fischer, L.; Beauchesne, F.; Danot, M.; Gaborit, V.; Breysse, M. Catal. Lett. 2000, 64, 59.  doi: 10.1023/A:1019058113931

    56. [56]

      Gaborit, V.; Allali, N.; Danot, M.; Geantet, C.; Cattenot, M.; Breysse, M.; Diehl, F. Catal. Today 2003, 78, 499.  doi: 10.1016/S0920-5861(02)00336-X

    57. [57]

      Aray, Y.; Zambrano, D.; Cornejo, M. H.; Ludeña, E. V.; Iza, P.; Vidal, A. B.; Coll, D. S.; Jimenez, D. M.; Henriquez, F.; Paredes, C. J. Phys. Chem. C 2014, 118, 27823.  doi: 10.1021/jp5059269

    58. [58]

      Ivanovskaya, V. V.; Heine, T.; Gemming, S.; Seifert, G. Phys. Status. Solidi. 2006, 243, 1757.  doi: 10.1002/(ISSN)1521-3951

    59. [59]

      Ivanovskaya, V. V.; Zobelli, A.; Gloter, A.; Brun, N.; Serin, V.; Colliex, C. Phys. Rev. B:Condens. Matter 2008, 78, 134104.  doi: 10.1103/PhysRevB.78.134104

    60. [60]

      Deepak, F. L.; Cohen, H.; Cohen, S.; Feldman, Y.; Popovitz-Biro, R.; Azulay, D.; Millo, O.; Tenne, R. J. Am. Chem. Soc. 2007, 129, 12549.  doi: 10.1021/ja074081b

    61. [61]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision D. 01, Gaussian, Inc.:Wallingford, CT, 2004.

    62. [62]

      Becke, A. D. J. Chem. Phys. 1993, 98, 1372.  doi: 10.1063/1.464304

    63. [63]

      Lee, C.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    64. [64]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Phys. Chem. 1994, 98, 11623.  doi: 10.1021/j100096a001

    65. [65]

      Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.  doi: 10.1063/1.467146

    66. [66]

      Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.  doi: 10.1039/b508541a

    67. [67]

      Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119. The exponents (included those of the polarization functions) and contraction coefficients can be retrieved from the following web-site:https://bse.pnl.gov/bse/portal.

    68. [68]

      Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123.  doi: 10.1007/BF01114537

    69. [69]

      Kuchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Pseudopotentials of the Stuttgart/Dresden Group 1998, revision August 11, 1998; < http://www.theochem.uni-stuttgart.de/pseudopotentiale > .

    70. [70]

      Dunning, T. H. Jr. J. Chem. Phys. 1989, 90, 1007.  doi: 10.1063/1.456153

    71. [71]

      Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408.  doi: 10.1063/1.1337864

    72. [72]

      Woon, D. E.; Dunning, T. H. Jr. J. Chem. Phys. 1993, 98, 1358.  doi: 10.1063/1.464303

    73. [73]

      Dunning, T. H. Jr.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244.  doi: 10.1063/1.1367373

    74. [74]

      Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.  doi: 10.1063/1.443164

    75. [75]

      Scuseria, G. E.; Janssen, C. L.; Schaefer Ⅲ, H. F. J. Chem. Phys. 1988, 89, 7382.  doi: 10.1063/1.455269

    76. [76]

      Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.  doi: 10.1016/S0009-2614(89)87395-6

    77. [77]

      Watts, J. D.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 8718.  doi: 10.1063/1.464480

    78. [78]

      Bartlett, R. J.; Musial, M. Rev. Mod. Phys. 2007, 79, 291.  doi: 10.1103/RevModPhys.79.291

    79. [79]

      Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O'Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M., MOLPRO, Version 2010. 1, a package of ab initio programs, < http://www.molpro.net > .

    80. [80]

      Dennington, R. Ⅱ; Keith, T.; Millam, J. GaussView, Version 4. 1. 2., Semichem Inc., Shawnee Mission, 2007.

    81. [81]

      Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 10180.  doi: 10.1063/1.477711

    82. [82]

      Zhang, S.; Luo, C. G.; Li, H. Y.; Lu, C.; Li, G. Q.; Lu, Z. W. Mater. Chem. Phys. 2015, 160, 227.  doi: 10.1016/j.matchemphys.2015.04.028

    83. [83]

      Zhang, S.; Zhang, Y.; Lu, Z.; Shen, X.; Li, G.; Peng, F.; Bu, X. J. Mater. Sci. 2016, 51, 9440.  doi: 10.1007/s10853-016-0189-9

    84. [84]

      Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Chem. Sci. 2011, 2, 1262.  doi: 10.1039/C1SC00117E

    85. [85]

      Duchet, J. C.; Van-Oers, E. M.; De-Beer, V. H. J.; Prins, R. J. Catal. 1983, 80, 386.  doi: 10.1016/0021-9517(83)90263-4

    86. [86]

      Afanasiev, P.; Jobic, H.; Lorentz, C.; Leverd, P.; Mastubayashi, N.; Piccolo, L.; Vrinat, M. J. Phys. Chem. C 2009, 113, 4139.  doi: 10.1021/jp809300y

    87. [87]

      Afanasiev, P. J. Catal. 2010, 269, 269.  doi: 10.1016/j.jcat.2009.11.004

    88. [88]

      Allali, N.; Leblanc, A.; Danot, M.; Geantet, C.; Vrinat, M.; Breysse, M. Catal. Today 1996, 27, 137.  doi: 10.1016/0920-5861(95)00181-6

    89. [89]

      Christe, K. O.; Dixon, D. A.; Mclemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. J. Fluorine Chem. 1999, 101, 151.

    90. [90]

      Li, S.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 6231.  doi: 10.1021/jp060735b

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

Metrics
  • PDF Downloads(2)
  • Abstract views(1087)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return