Citation: Zhou Gongbing, Wang Hao, Pei Yan, Qiao Minghua, Sun Bin, Zong Baoning. Pore Size Effect of Ru-Zn/ZrO2 Catalyst on Partial Hydrogenation of Benzene to Cyclohexene[J]. Acta Chimica Sinica, ;2017, 75(3): 321-328. doi: 10.6023/A16100569 shu

Pore Size Effect of Ru-Zn/ZrO2 Catalyst on Partial Hydrogenation of Benzene to Cyclohexene

  • Corresponding author: Qiao Minghua, mhqiao@fudan.edu.cn Zong Baoning, zongbn.ripp@sinopec.com
  • Received Date: 28 October 2016

    Fund Project: the National Key Research Program of China 2012CB224804the Science & Technology Commission of Chongqing Municipality cstc2016jcyjA0392the National Key Research and Development Project of China 2016YFB0301602the National Natural Science Foundation of China 21373055Beijing Synchrotron Radiation Facility, the Scientific and Technological Research Program of Chongqing Municipal Education Commission KJ1500305Science and Technology Commission of Shanghai Municipality 08DZ2270500

Figures(10)

  • Partial hydrogenation of benzene to cyclohexene is an important industrial process and features exceptional superiority to processes such as dehydration of cyclohexanol, dehydrogenation of cyclohexane, and the Birch reduction in terms of inexpensive feedstock, succinct reaction route and consequently, improved operational simplicity. In this work, the pore size effect on the partial hydrogenation of benzene to cyclohexene over the Ru-Zn/ZrO2 catalysts was studied for the first time. Three ZrO2 supports with the same tetragonal crystallographic form (t-ZrO2) but different pore sizes were synthesized by the precipitation and the solvothermal methods. Using these ZrO2 samples, the Ru-Zn/ZrO2 catalysts were prepared by the deposition-precipitation method followed by reduction in ZnSO4·7H2O aqueous solution. The supports and catalysts were characterized by powder X-ray diffraction (XRD), N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge structure (XANES), temperature-programmed reduction of H2 (H2-TPR), and transmission electron microscopy (TEM). It is identified that the Ru nanoparticles (NPs) on these catalysts had similar size and chemical state. In the partial hydrogenation of benzene to cyclohexene, a pronounced pore size effect of the catalyst was identified. With the increase in the pore size, while the turnover frequency (TOF) of benzene was essentially unchanged, the initial selectivity (S0) to cyclohexene increased steadily. The Ru-Zn/ZrO2(11.7) catalyst with the ZrO2 support having the pore size of 11.7 nm exhibited the highest S0 (88%) and yield (54%) of cyclohexene. On the basis of the characterization results, the similarity in the TOFs of benzene on the Ru-Zn/ZrO2 catalysts with different pore sizes is associated with the identical sizes of the Ru NPs. On the other hand, we tentatively propose that the ZrO2 support with large pore size is beneficial for the out-diffusion of the cyclohexene nano-droplets formed in the pore channels, thus avoiding consecutive hydrogenation to cyclohexane and improving the S0.
  • 加载中
    1. [1]

      Dou, R. F.; Tan, X. H.; Fan, Y. Q.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Sun, B.; Zong, B. N. Acta Chim. Sinica 2016, 74, 503.  doi: 10.6023/A16020074

    2. [2]

      Sun, H. J.; Jiang, H. B.; Li, S. H.; Dong, Y. Y.; Wang, H. X.; Pan, Y. J.; Liu, S. C.; Tang, M. S.; Liu, Z. Y. Chem. Eng. J. 2013, 218, 415.  doi: 10.1016/j.cej.2012.12.041

    3. [3]

      Sun, H. J.; Wang, H. X.; Jiang, H. B.; Li, S. H.; Liu, S. C.; Liu, Z. Y.; Yuan, X. M.; Yang, K. J. Appl. Catal. A 2013, 450, 160.  doi: 10.1016/j.apcata.2012.10.016

    4. [4]

      Zhang, P.; Wu, T. B.; Jiang, T.; Wang, W. T.; Liu, H. Z.; Fan, H. L.; Zhang, Z. F.; Han, B. X. Green Chem. 2013, 15, 152.  doi: 10.1039/C2GC36596K

    5. [5]

      Xu, H. L.; Huang, J. J.; Yang, X. Y.; Du, J. M.; Shen, J.; Shen, W. Acta Chim. Sinica 2006, 64, 1615.
       

    6. [6]

      Kang, J. C.; Cheng, K.; Zhang, L.; Zhang, Q. H.; Ding, J. S.; Hua, W. Q.; Lou, Y. C.; Zhai, Q. G.; Wang, Y. Angew. Chem. Int. Ed. 2011, 50, 5200.  doi: 10.1002/anie.v50.22

    7. [7]

      Liu, Y. C.; Fang, K. G.; Chen, J. G.; Sun, Y. H. Green Chem. 2007, 9, 611.  doi: 10.1039/B614266D

    8. [8]

      Zuo, S. F.; Huang, Q. Q.; Zhou, R. X. Catal. Today 2008, 139, 88.  doi: 10.1016/j.cattod.2008.08.026

    9. [9]

      Gelesky, M. A.; Chiaro, S. S. X.; Pavan, F. A.; dos Santos, J. H. Z.; Dupont, J. Dalton Trans. 2007, 5549.

    10. [10]

      Xia, Q. H.; Hidajat, K.; Kawi, S. Catal. Today 2001, 68, 255.  doi: 10.1016/S0920-5861(01)00285-1

    11. [11]

      Wang, J. Q.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Fan, K. N. Acta Chim. Sinica 2004, 62, 1765.
       

    12. [12]

      Job, N.; Pereira, M. F. R.; Lambert, S.; Cabiac, A.; Delahay, G.; Colomer, J. F.; Marien, J.; Figueiredo, J. L.; Pirard, J. P. J. Catal. 2006, 240, 160.  doi: 10.1016/j.jcat.2006.03.016

    13. [13]

      Preising, H.; Enke, D. Colloids Surf. A 2007, 300, 21.  doi: 10.1016/j.colsurfa.2006.12.036

    14. [14]

      Zhou, G. B.; Liu, J. L.; Tan, X. H.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Ind. Eng. Chem. Res. 2012, 51, 12205.

    15. [15]

      Zhao, Y. J.; Zhou, J.; Zhang, J. G.; Wang, S. D. J. Mol. Catal. A 2009, 309, 35.  doi: 10.1016/j.molcata.2009.04.012

    16. [16]

      Wang, Z. Q.; Ma, Y. C.; Lin, J. X. J. Mol. Catal. A 2013, 378, 307.  doi: 10.1016/j.molcata.2013.07.003

    17. [17]

      Campbell, P. S.; Santini, C. C.; Bayard, F.; Chauvin, Y.; Collière, V.; Podgoršek, A.; Costa Gomes, M. F.; Sá, J. J. Catal. 2010, 275, 99.  doi: 10.1016/j.jcat.2010.07.018

    18. [18]

      Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. In Handbook of X-ray Photoelectron Spectroscopy, Ed.:Chastain, J., Perkin-Elmer, Minnesota, 1992, p. 89.

    19. [19]

      Deroubaix, G.; Marcus, P. Surf. Interface Anal. 1992, 18, 39.  doi: 10.1002/(ISSN)1096-9918

    20. [20]

      Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Appl. Catal. A 2005, 292, 244.  doi: 10.1016/j.apcata.2005.06.005

    21. [21]

      Lorenzut, B.; Montini, T.; Pavel, C. C.; Comotti, M.; Vizza, F.; Bianchini, C.; Fornasiero, P. Chem Cat Chem 2010, 2, 1096.

    22. [22]

      Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A 2004, 272, 29.  doi: 10.1016/j.apcata.2004.04.038

    23. [23]

      Yuan, P. Q.; Wang, B. Q.; Ma, Y. M.; He, H. M.; Cheng, Z. M.; Yuan, W. K. J. Mol. Catal. A 2009, 309, 124.  doi: 10.1016/j.molcata.2009.05.006

    24. [24]

      Schwab, F.; Lucas, M.; Claus, P. Angew. Chem. Int. Ed. 2011, 50, 10453.  doi: 10.1002/anie.201104959

    25. [25]

      Schwab, F.; Lucas, M.; Claus, P. Green Chem. 2013, 15, 646.  doi: 10.1039/c3gc36615d

    26. [26]

      Zhao, Y. J.; Zhou, J.; Zhang, J. G.; Wang, S. D. Catal. Lett. 2009, 131, 597.  doi: 10.1007/s10562-009-0025-9

    27. [27]

      Zhou, X. L.; Sun, H. J.; Guo, W.; Liu, Z. Y.; Liu, S. C. J. Nat. Gas Chem. 2011, 20, 53.  doi: 10.1016/S1003-9953(10)60152-1

    28. [28]

      Foppa, L.; Dupont, J. Chem. Soc. Rev. 2015, 44, 1886.  doi: 10.1039/C4CS00324A

    29. [29]

      Li, W. Z.; Huang, H.; Li, H. J.; Zhang, W.; Liu, H. C. Langmuir 2008, 24, 8358.  doi: 10.1021/la800370r

    30. [30]

      Jung, K. T.; Bell, A. T. J. Mol. Catal. A 2000, 163, 27.  doi: 10.1016/S1381-1169(00)00397-6

    31. [31]

      Warren, B. E. J. Appl. Phys. 1941, 12, 375.  doi: 10.1063/1.1712915

    32. [32]

      Robertson, S. D.; Anderson, R. B. J. Catal. 1971, 23, 286.  doi: 10.1016/0021-9517(71)90051-0

    33. [33]

      Elmasides, C.; Kondarides, D. I.; Grünert, W.; Verykios, X. E. J. Phys. Chem. B 1999, 103, 5227.

    34. [34]

      Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537.  doi: 10.1107/S0909049505012719

    35. [35]

      Sun, H. J.; Li, Y. Y.; Li, S. H.; Zhang, Y. X.; Liu, S. C.; Liu, Z. Y.; Ren, B. Z. Acta Phys.-Chim. Sin. 2014, 30, 1332.

    36. [36]

      Bu, J.; Wang, J. Q.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Fan, K. N. Acta Chim. Sinica 2007, 65, 1338.
       

    37. [37]

      Wang, L. J.; Zhang, A. Q.; Li, L.; Liu, H. F.; Liu, S. Z. Acta Chim. Sinica 2012, 70, 1021.  doi: 10.6023/A1110173
       

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    18. [18]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    19. [19]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(9)
  • Abstract views(1060)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return