Citation: Yang Xiangping, Guo Xiaoxue, Zhang Chenghua, Wang Xiaoping, Yang Yong, Li Yongwang. Synthesis and Catalytic Properties of Iron Based Fischer-Tropsch Catalyst Mediated by MOFs Fe-MIL-100[J]. Acta Chimica Sinica, ;2017, 75(4): 360-366. doi: 10.6023/A16100549 shu

Synthesis and Catalytic Properties of Iron Based Fischer-Tropsch Catalyst Mediated by MOFs Fe-MIL-100

  • Corresponding author: Li Yongwang, zhangchh@sxicc.ac.cn
  • Received Date: 15 October 2016

    Fund Project: the National Natural Science Foundation of China 91545109International Cooperation in Science and Technology of Shanxi Province 2014081004

Figures(8)

  • Depletion of crude oil resources and environmental concerns have spurred worldwide interest in finding un-oil route for liquid fuels. Fischer-Tropsch synthesis is an effective progress for a wide spectrum of hydrocarbon chains from synthesis gas. The use of iron-based catalysts would be preferred in the industry. Here we present a strategy to produce highly dispersed active component embedded in a matrix of porous carbon. Through the carbonization of iron-containing metal-organic frameworks (Fe-MIL-100) at different temperature in N2, four kinds of Fe@C catalysts were prepared. Glucose was used as additional carbon precursor for the synthesis catalyst samples to prevent particle agglomeration. Our strategy avoids the particle agglomeration in the weak metal-support interaction Fe@C catalysts during calcination, reduction and reaction. The structure and morphology of prepared catalysts were characterized by X-ray diffraction (XRD), N2 physical adsorption, transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometer (ICP-AES). It is demonstrated that the iron loading, the particle size, and the Fe phase structure of Fe@C catalysts can be controlled by changing the carbonization temperature of Fe-MIL-100. With increasing the temperature, the iron loading and the particle size increase gradually. Depending on the carbonization temperature, the Fe3O4 phase is dominant at 400 and 500℃. The FeO and Fe phase appear at 600℃. The Fe3C phase prevails at 700℃. The high dispersion of the metal phase and its encapsulation in a highly porous carbon matrix result in an unrivalled FTS activity. The spatial restriction created by encapsulation seems to minimize sintering and oxidation of the active Hägg carbide phase. When the reaction conditions were set at 260℃, 3 MPa, the space velocity of 8000 h-1, the conversion of CO is up to 68%. The Fe time yield (FTY) of the Fe@C-500 catalyst were as high as 164 μmolCO·gFe-1·s-1, which surpasses that of most F-T catalysts reported in the literature in middle-temperature Fischer-Tropsch synthesis.
  • 加载中
    1. [1]

      Yang, W. S.; Fang, D. Y.; Xiang, H. W.; Li, Y. W. Acta Chim. Sinica 2005, 63, 157.  doi: 10.3321/j.issn:0567-7351.2005.02.012
       

    2. [2]

      Gao, L.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H. Acta Chim. Sinica 2008, 66, 1851.  doi: 10.3321/j.issn:0567-7351.2008.16.001
       

    3. [3]

      Zhang, J.; Zhang, Z.-P.; Su, J.-J.; Fu, D.-L.; Dai, W.-W.; Liu, D.; Xu, J.; Han, Y.-F. CIESC J. 2016, 67, 550.

    4. [4]

      Suo, H.-Y.; Wang, S.-G.; Zhang, C.-H.; Xu, J.; Wu, B.-S.; Yang, Y.; Xiang, H.-W.; Li, Y.-W. J. Catal. 2012, 286, 111.  doi: 10.1016/j.jcat.2011.10.024

    5. [5]

      Krylova, A. Y.; Panin, A. A.; Lyadov, A. S.; Sagitov, S. A.; Kurkon, V. I.; Kryazhev, Y. G. Petrol. Chem. 2011, 51, 317.  doi: 10.1134/S0965544111050094

    6. [6]

      Abbaslou, R. M. M.; Tavasoli, A.; Dalai, A. K. Appl. Catal. A-General 2009, 355, 33.  doi: 10.1016/j.apcata.2008.11.023

    7. [7]

      Lv, J.-Z.; Hu, R.-Z.; Zhuo, O.; Xu, B.-L.; Yang, L.-J.; Wu, Q.; Wang, X.-Z.; Fan, Y.-N.; Hu, Z. Acta Chim. Sinica 2014, 72, 1017.  doi: 10.3866/PKU.WHXB201401251
       

    8. [8]

      deKrafft, K. E.; Wang, C.; Lin, W. Adv. Mater. 2014, 24, 2014.

    9. [9]

      Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés, I.; Xamena, F. X. ACS Catal. 2014, 4, 361.  doi: 10.1021/cs400959k

    10. [10]

      Masoomi, M. Y.; Morsali, A. Coord. Chem. Rev. 2012, 256, 2921.  doi: 10.1016/j.ccr.2012.05.032

    11. [11]

      Wang, C.; Xie, Z.-G.; Kathryn, E. J. Am. Chem. Soc. 2011, 133, 13445.  doi: 10.1021/ja203564w

    12. [12]

      Liu, B.; Shioyama, H.; Jiang, H.; Zhang, X.; Xu, Q. Carbon 2010, 48, 456.  doi: 10.1016/j.carbon.2009.09.061

    13. [13]

      Santos, V. P.; Wezendonk, T. A.; Jaén, J. J. D.; Dugulan, A. L.; Nasalevich, M. A.; Islam, H.-U.; Chojecki, A.; Sartipi, S.; Sun, X. H.; Hakeem. A. A.; Koeken, A. C. J.; Ruitenbeek, M.; Davidian, T.; Meima, G. R.; Sankar, G.; Kapeijn, F.; Makkee, M.; Gascon, J. Nat. Commun. 2015, 6, 6451.  doi: 10.1038/ncomms7451

    14. [14]

      Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-C.; Grenéche, J.-M.; Margiolaki, I.; Frey, G. ChemComm 2007, 27, 2820.

    15. [15]

      Fang, C. M.; Sluiter, M. H. F.; Huis, M. A.; Ande, C. K.; Zandbergen, H. W. Phys. Rev. Lett. 2010, 105, 055503.  doi: 10.1103/PhysRevLett.105.055503

    16. [16]

      Merkle, R.; Maier, J. Z. Anorg. Allg. Chem. 2005, 631, 1163.  doi: 10.1002/(ISSN)1521-3749

    17. [17]

      Qiu, C. W.; Wu, B. S.; Meng, S. C.; Li, Y. W. Acta Chim. Sinica 2015, 73, 690.
       

    18. [18]

      Park, J. Y.; Lee, Y. J.; Khanna, P. K.; Jun, K. W.; Bae, J. W.; Kim, Y. H. J. Mol. Catal. A 2010, 323, 84.  doi: 10.1016/j.molcata.2010.03.025

    19. [19]

      Yang, C.; Zhao, H.; Hou, Y.; Ma, D. J. Am. Chem. Soc. 2012, 134, 15814.  doi: 10.1021/ja305048p

    20. [20]

      Zhang, Q.; Kang, J.; Wang, Y. ChemCatChem 2010, 2, 1030.  doi: 10.1002/cctc.201000071

    21. [21]

      Wezendonk, T. A.; Santos, V. P.; Nasalevich, M. A.; Warringa, Q. S. E.; Dugulan, A. L.; Chojecki, A.; Koeken, C. J.; Ruitenbeek, M.; Meima, G.; Islam, H.-U.; Sankar, G.; Makkee, M.; Kapteijn, F.; Gascon, H.-U. ACS Catal. 2016, 6, 3236.  doi: 10.1021/acscatal.6b00426

    22. [22]

      Yu, G.; Sun, B.; Pei, Y.; Xie, S.; Yan, S.; Qiao, M.; Fan, K.; Zhang, X.; Zong, B. J. J. Am. Chem. Soc. 2010, 132, 935.  doi: 10.1021/ja906370b

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    20. [20]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

Metrics
  • PDF Downloads(12)
  • Abstract views(1973)
  • HTML views(502)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return