Citation: Du Jin, Lin Ning, Qian Yitai. Recent Development of the Synthetic Method for Si/Graphite Anode Materials[J]. Acta Chimica Sinica, ;2017, 75(2): 147-153. doi: 10.6023/A16100548 shu

Recent Development of the Synthetic Method for Si/Graphite Anode Materials

  • Corresponding author: Lin Ning, ningl@mail.ustc.edu.cn
  • Received Date: 15 October 2016

    Fund Project: Project supported by the National Postdoctoral Program for Innovative Talents No. BX201600140and the China Postdoctoral Science Foundation funded Project No. 2016M600484

Figures(8)

  • Rechargeable lithium-ion batteries (LIBs) are recognized as the most important power supply for portable electronic devices, electric vehicle and hybrid electric vehicle. There is a continuing demand for advanced LIBs with longer life spans and higher capacity. Graphite based anode materials are now widely employed in LIBs due to their excellent cycling stability and good conductivity. However, the theoretical capacity of graphite is as low as 372 mA·h·g-1 that is hard to meet the ever-increasing demand of high energy density LIBs. Recent years, Si based anode materials have attracted enormous attention due to its high reversible capacity (3579 mA·h·g-1). However, the main challenge facing Si is the huge volume change during lithiation/delithiation process. It is well accepted that nanostructured Si could effectively release the strain stress caused by volume variation, thus maintaining the conductive and structural integrity of the electrode. But, the high surface area of nanostructured anode materials would result in serious side reactions between electrode materials and electrolyte, which would consume a lot of Li+, and leading to low coulombic efficiency. Very recently, preparation of nano-Si/graphite composite as anode for LIBs has been demonstrated as a promising high-capacity anode. The Si/graphite anode is able to take full advantages of the properties of these two materials such as the high specific capacity of nano-sized Si, mechanical flexibility and good conductivity of graphite. These beneficial features make Si/graphite hybrid composite as an ideal anode candidate for high-performance LIBs. To date, a lot of fabricating strategies have been reported to prepare Si/graphite composite. The keys and interests are focused on how to make the nanosized Si and graphite particles distributed uniformly, and how to construct a stable framework with three-dimensional conductive network. An overview of the methodologies proposed in the last decade for combining nanosized Si and graphite is summarized, which are composed of a series of technological means. Here, these methodologies are classified in three categories on basis of the composite step, including solid-state approach, liquid-phase mixture method, and chemical vapor deposition process.
  • 加载中
    1. [1]

      (a) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.(b) Li, H.; Wang, Z.; Chen, L.; Huang, X. Adv. Mater. 2009, 21, 4593.(c) Goodenough, J. B.; Kim, Y. Chem. Mater. 2009, 22, 587.(d) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. 

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      (a) Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. J. Mater. Chem. 2004, 14, 1754.(b) Courtel, F. M.; Niketic, S.; Duguay, D.; Abu-Lebdeh, Y.; Davidson, I. J. J. Power Sources 2011, 196, 2128.(c) Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. Electrochem. Soc. 2000, 147, 1245.(d) Yang, S.; Song, H.; Chen, X. Electrochem. Commun. 2006, 8, 137. 

    7. [7]

    8. [8]

      Lee, J. K.; Oh, C.; Kim, N.; Hwang, J. Y.; Sun, Y. K. J. Mater. Chem. A 2016, 4, 5366. 

    9. [9]

      Li, H.; Wang, Z.; Chen, L.; Huang, X. Adv. Mater. 2009, 21, 4593.

    10. [10]

      Wilson, A. M.; Way, B. M.; Dahn, J. R.; Van Buuren, T. J. Appl. Phys. 1995, 77, 2363. 

    11. [11]

      Yuan, L. X.; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J. T.; Huang, Y. H.; Goodenough, J. B. Energ. Environ. Sci. 2011, 4, 269. 

    12. [12]

      Wu, H.; Cui, Y. Nano Today 2012, 7, 414.

    13. [13]

      Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y. Electrochem. Solid St. 1999, 2, 547.

    14. [14]

      Choi, J. W.; Cui, Y.; Nix, W. D. J. Mech. Phys. Solids 2011, 59, 1717. 

    15. [15]

      Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. ACS Nano 2012, 6, 1522. 

    16. [16]

      McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C.; Nix, W. D.; Cui, Y. Nano Lett. 2013, 13, 758. 

    17. [17]

      Li, J.; Dozier, A. K.; Li, Y.; Yang, F.; Cheng, Y. T. J. Electrochem. Soc. 2011, 158, A689.

    18. [18]

      Gómez-Cámer, J.-L.; Bünzl, C.; Hantel, M.-M. Carbon 2016, 105, 42.

    19. [19]

      Zhao, H.; Du, A.; Ling, M.; Battaglia, V.; Liu, G. Electrochim. Acta 2016, 209, 159.

    20. [20]

      Lee, H.-Y.; Lee, S.-M. J. Power Sources 2002, 112, 649.

    21. [21]

      Yu, H.-J.; Liu, X.-L.; Chen, Y.-X.; Liu, H.-B. Ionics 2016, 22, 1847.

    22. [22]

      Dash, R.; Pannala, S. Sci. Rep. 2016, 6, 27449.

    23. [23]

    24. [24]

      Dimov, N.; Kugino, S.; Yoshio, M. J. Power Sources 2004, 136, 108. 

    25. [25]

      Wang, P.; Li, Y.-N.; Yang, J.; Zheng, Y. Int. J. Electrochem. Sci. 2006, 1, 122.

    26. [26]

      Lee, H.-Y.; Lee, S.-M. Electrochem. Commun. 2004, 6, 465.

    27. [27]

      Zhang, Y.; Zhang, X. G.; Zhang, H. L.; Zhao, Z. G.; Li, F.; Liu, C.; Cheng, H. M. Electrochim. Acta 2006, 51, 4994.

    28. [28]

      Xu, W.; Flake, J. C. J. Electrochem. Soc. 2010, 157, A41.

    29. [29]

      Zuo, P.; Yin, G.; Tong, Y. Solid State Ionics 2006, 177, 3297.

    30. [30]

      Zhou, W.; Upreti, S.; Whittingham, M. S. Electrochem. Commun. 2011, 13, 158.

    31. [31]

      Jo, Y. N.; Kim, Y.; Kim, J. S.; Song, J. H.; Kim, K. J.; Kwag, C. Y.; Lee, D. J.; Park, C. W.; Kim, Y. J. J. Power Sources 2010, 195, 6031.

    32. [32]

      Lai, J.; Guo, H.-J.; Wang, Z.-X.; Li, X.-H.; Zhang, X.-P.; Wu, F.-X. Yue, P. J. Alloy. Compd. 2012, 530, 30.

    33. [33]

      Gan, L.; Guo, H.-J.; Wang, Z.-X.; Li, X.-H.; Peng, W.-J.; Wang, J.-X.; Huang, S.-L.; Su, M.-R. Electrochim. Acta 2013, 104, 117.

    34. [34]

      Yu, J.; Zhan, H.-H.; Wang, Y.-Y.; Zhang, Z.-L.; Chen, H.; Li, H.; Zhong, Z.; Su, F.-B. J. Power Sources 2013, 228, 112.

    35. [35]

      Li, J.; Wang, J.-T.; Yang, J.-Y.; Ma, X.-L.; Lu, S.-G. J. Alloy. Compd. 2016, 688, 1072.

    36. [36]

      Zhou, R.; Fan, R.; Tian, Z.; Zhou, Y.; Guo, H.; Kou, L.; Zhang, D. J. Alloy. Compd. 2016, 658, 91.

    37. [37]

      Wang, H.; Xie, J.; Zhang, S.; Cao, G.; Zhao, X. RSC Adv. 2016, 6, 69882.

    38. [38]

      Zhang, L.; Wang, Y.; Kan, G.; Zhang, Z.; Wang, C.; Zhong, Z.; Su, F. RSC Adv. 2014, 4, 43114.

    39. [39]

      Kim, S.-Y.; Lee, J.; Kim, B.-H. ACS Appl. Mater. Interf. 2016, 8, 12109.

    40. [40]

      Holzapfel, M.; Buqa, H.; Krumeich, F.; Novak, P.; Petrat, F. M.; Veit, C. Electrochem. Solid St. 2005, 8, A516.

    41. [41]

      Jeong, S.; Lee, J. P.; Ko, M.; Kim, G.; Park, S.; Cho, J. Nano Lett. 2013, 13, 3403.

    42. [42]

      Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Nat. Energy 2016, 1, 16113.

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

Metrics
  • PDF Downloads(23)
  • Abstract views(1779)
  • HTML views(372)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return