Citation: Qin Tianyi, Zeng Yi, Chen Jinping, Yu Tianjun, Li Yi. Pyrenyl Peripheral-Decorated Polyamidoamine Dendrimer for Fluorescent Temperature Detection in Aqueous Phase[J]. Acta Chimica Sinica, ;2017, 75(1): 99-104. doi: 10.6023/A16100544 shu

Pyrenyl Peripheral-Decorated Polyamidoamine Dendrimer for Fluorescent Temperature Detection in Aqueous Phase

  • Corresponding author: Zeng Yi, zengyi@mail.ipc.ac.cn Li Yi, yili@mail.ipc.ac.cn
  • Received Date: 13 October 2016

    Fund Project: 973 Program 2013CB834703973 Program 2013CB834505National Natural Science Foundation of China 21233011

Figures(6)

  • A protonated polyamidoamine (PAMAM) dendrimer of generation 2 with pyrenyl attached to its periphery (G2 PAMAM-PyH) was designed and synthesized. G2 PAMAM-Py was synthesized by a condensation of the terminal amino group of the PAMAM dendrimer and the aldehyde group of 1-pyrenecarboxaldehyde followed by a reduction of Schiff base through "one pot" reaction. G2 PAMAM-Py was further protonated by adding HCl, giving the target product G2 PAMAM-PyH. The structure of G2 PAMAM-PyH was characterized by NMR, FTIR, and MS. The functionalization extent of the peripheral amino groups of PAMAM by pyrenyl is 100% according to the 1H NMR and UV-visible spectra. The amphiphilic G2 PAMAM-PyH is soluble in water with a critical aggregation concentration of 3.3×10-7 mol·dm-3. Absorption, dynamic light scattering (DLS), and transmission electronic microscopy (TEM) studies demonstrate that G2 PAMAM-PyH exists as vesicle with a bilayer membrane and an average hydrodynamic diameter of ca. 184 nm in aqueous phase. G2 PAMAM-PyH in aqueous phase exhibits dual fluorescence, pyrenyl monomer and excimer emission. The pyrenyl monomer fluorescence increases slightly and the pyrenyl excimer emission decreases monotonically upon temperature raising from 1 to 70℃. Meanwhile, the fluorescence color changes from green (low temperature) to blue (high temperature). The monomer emission enhancement is mainly attributed to less formation of excimer when rising temperature. The fluorescence intensity ratio of pyrenyl excimer to pyrenyl monomer (I495 nm/I398 nm) changes with varying temperature recoverably, and the relationship between I495 nm/I398 nm and temperature can be expressed as I495 nm/I398 nm=28.23-0.68t+3.21×10-3t2+1.83×10-5t3. The accuracy for the measurement of the temperature is better than 0.9℃ in the temperature range of 1~70℃, facilitating in situ gradient temperature measurement. The temperature gradient of aqueous phase in a glass tube is investigated by using G2 PAMAM-PyH, which is consistent with the detection result by using a thermocouple meter. This study provides a potential strategy for developing fluorescent temperature sensing system.
  • 加载中
    1. [1]

      (a) Wolfbeis, O. S. Adv. Mater. 2008, 20, 3759; (b) Mesli, A.; Dobaczewski, L.; Nielsen, K. B.; Kolkovsky, V.; Petersen, M. C.; Larsen, A. N. Phys. Rev. B 2008, 78, 165202; (c) Uchiyama, S.; de Silva, A. P.; Iwai, K. J. Chem. Educ. 2006, 83, 720; (d) Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nature 2013, 500, 54-U71.

    2. [2]

      (a) Childs, P. R. N.; Greenwood, J. R.; Long, C. A. Rev. Sci. Instrum. 2000, 71, 2959; (b) Seyedyagoobi, J. Rev. Sci. Instrum. 1991, 62, 249.

    3. [3]

      (a) Lee, T. W.; Hegde, N. Combust. Flame 2005, 142, 314; (b) Chung, K.; Cho, J. K.; Park, E. S.; Breedveld, V.; Lu, H. Anal. Chem. 2009, 81, 991.

    4. [4]

      (a) Ring, E. F. J. Infrared Phys. Techn. 2007, 49, 297; (b) Grattan, K. T. V.; Palmer, A. W. Rev. Sci. Instrum. 1985, 56, 1784; (c) Dabiri, D. Exp. Fluids 2009, 46, 191.

    5. [5]

      (a) Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Chem. Soc. Rev. 2013, 42, 7834; (b) Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Nanoscale 2012, 4, 4799; (c) Song, Q. S.; Yang, S. S.; Sheng, R.; Li, T. Acta Chim. Sinica 2014, 72, 89 (in Chinese). (宋秋生, 杨森森, 盛锐, 李谭, 化学学报, 2014, 72, 89.)

    6. [6]

      (a) Liu, J.; Guo, X. D.; Hu, R.; Xu, J.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Anal. Chem. 2015, 87, 3694; (b) Liu, X.; Li, S. Y.; Feng, J.; Li, Y.; Yang, G. Q. Chem. Commun. 2014, 50, 2778; (c) Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S.Nat. Commun. 2012, 3, 705; (d) Feng, J.; Tian, K. J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Zeng, Y.; Li, Y.; Yang, G. Q. Angew. Chem.-Int. Ed. 2011, 50, 8072; (e) Feng, J.; Xiong, L.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Adv. Funct. Mater. 2013, 23, 340; (f) Ebrahimi, S.; Akhlaghi, Y.; Kompany-Zareh, M.; Rinnan, A. ACS Nano 2014, 8, 10372; (g) Zhegalova, N. G.; Dergunov, S. A.; Wang, S. T.; Pinkhassik, E.; Berezin, M. Y. Chem.-Eur. J. 2014, 20, 10292; (h) Hu, X. L.; Li, Y.; Liu, T.; Zhang, G. Y.; Liu, S. Y. ACS Appl. Mater. Interfaces 2015, 7, 15551; (i) Song, Q. S.; Zhou, W.; Wu, X. M.; Wu, F. Acta Chim. Sinica 2016, 74, 435 (in Chinese). (宋秋生, 周稳, 吴新民, 吴凡, 化学学报, 2016, 74, 435.)

    7. [7]

      Ross, D.; Gaitan, M.; Locascio, L. E. Anal. Chem. 2001, 73, 4117.  doi: 10.1021/ac010370l

    8. [8]

      Ye, F.; Wu, C.; Jin, Y.; Chan, Y.-H.; Zhang, X.; Chiu, D. T. J. Am. Chem. Soc. 2011, 133, 8146.  doi: 10.1021/ja202945g

    9. [9]

      Ozawa, A.; Shimizu, A.; Nishiyabu, R.; Kubo, Y. Chem. Commun. 2015, 51, 118.  doi: 10.1039/C4CC07405J

    10. [10]

      (a) Kojima, C.; Irie, K.; Tada, T.; Tanaka, N. Biopolymers 2014, 101, 603; (b) Cakara, D.; Kleimann, J.; Borkovec, M. Macromolecules 2003, 36, 4201.

    11. [11]

      (a) Zeng, Y.; Li, Y. Y.; Li, M.; Yang, G. Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 9100; (b) Zhang, X. H.; Zeng, Y.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Langmuir 2014, 30, 718; (c) Liu, X. Y.; Zeng, Y.; Liu, J.; Li, P.; Zhang, D. S.; Zhang, X. H.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Langmuir 2015, 31, 4386; (d) Li, P.; Zeng, Y.; Chen, J. P.; Li, Y. Y.; Li, Y. Acta Chim. Sinica 2012, 70, 1611 (in Chinese). (李鹏, 曾毅, 陈金平, 李迎迎, 李嫕, 化学学报, 2012, 70, 1611.)

    12. [12]

      Zeng, Y.; Li, Y. Y.; Yuan, Z.; Li, Y. Acta Chim. Sinica 2009, 67, 2714 (in Chinese).
       

    13. [13]

      (a) Baker, G. A.; Baker, S. N.; McCleskey, T. M. Chem. Commun. 2003, 2932; (b) Lou, J. F.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69, 1262.

    14. [14]

      Sehgal, R. K.; Kumar, S. Org. Prep. Proced. Int. 1989, 21, 223.  doi: 10.1080/00304948909356367

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    14. [14]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    19. [19]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(8)
  • Abstract views(1418)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return