Citation: Qin Tianyi, Zeng Yi, Chen Jinping, Yu Tianjun, Li Yi. Pyrenyl Peripheral-Decorated Polyamidoamine Dendrimer for Fluorescent Temperature Detection in Aqueous Phase[J]. Acta Chimica Sinica, ;2017, 75(1): 99-104. doi: 10.6023/A16100544 shu

Pyrenyl Peripheral-Decorated Polyamidoamine Dendrimer for Fluorescent Temperature Detection in Aqueous Phase

  • Corresponding author: Zeng Yi, zengyi@mail.ipc.ac.cn Li Yi, yili@mail.ipc.ac.cn
  • Received Date: 13 October 2016

    Fund Project: 973 Program 2013CB834703973 Program 2013CB834505National Natural Science Foundation of China 21233011

Figures(6)

  • A protonated polyamidoamine (PAMAM) dendrimer of generation 2 with pyrenyl attached to its periphery (G2 PAMAM-PyH) was designed and synthesized. G2 PAMAM-Py was synthesized by a condensation of the terminal amino group of the PAMAM dendrimer and the aldehyde group of 1-pyrenecarboxaldehyde followed by a reduction of Schiff base through "one pot" reaction. G2 PAMAM-Py was further protonated by adding HCl, giving the target product G2 PAMAM-PyH. The structure of G2 PAMAM-PyH was characterized by NMR, FTIR, and MS. The functionalization extent of the peripheral amino groups of PAMAM by pyrenyl is 100% according to the 1H NMR and UV-visible spectra. The amphiphilic G2 PAMAM-PyH is soluble in water with a critical aggregation concentration of 3.3×10-7 mol·dm-3. Absorption, dynamic light scattering (DLS), and transmission electronic microscopy (TEM) studies demonstrate that G2 PAMAM-PyH exists as vesicle with a bilayer membrane and an average hydrodynamic diameter of ca. 184 nm in aqueous phase. G2 PAMAM-PyH in aqueous phase exhibits dual fluorescence, pyrenyl monomer and excimer emission. The pyrenyl monomer fluorescence increases slightly and the pyrenyl excimer emission decreases monotonically upon temperature raising from 1 to 70℃. Meanwhile, the fluorescence color changes from green (low temperature) to blue (high temperature). The monomer emission enhancement is mainly attributed to less formation of excimer when rising temperature. The fluorescence intensity ratio of pyrenyl excimer to pyrenyl monomer (I495 nm/I398 nm) changes with varying temperature recoverably, and the relationship between I495 nm/I398 nm and temperature can be expressed as I495 nm/I398 nm=28.23-0.68t+3.21×10-3t2+1.83×10-5t3. The accuracy for the measurement of the temperature is better than 0.9℃ in the temperature range of 1~70℃, facilitating in situ gradient temperature measurement. The temperature gradient of aqueous phase in a glass tube is investigated by using G2 PAMAM-PyH, which is consistent with the detection result by using a thermocouple meter. This study provides a potential strategy for developing fluorescent temperature sensing system.
  • 加载中
    1. [1]

      (a) Wolfbeis, O. S. Adv. Mater. 2008, 20, 3759; (b) Mesli, A.; Dobaczewski, L.; Nielsen, K. B.; Kolkovsky, V.; Petersen, M. C.; Larsen, A. N. Phys. Rev. B 2008, 78, 165202; (c) Uchiyama, S.; de Silva, A. P.; Iwai, K. J. Chem. Educ. 2006, 83, 720; (d) Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nature 2013, 500, 54-U71.

    2. [2]

      (a) Childs, P. R. N.; Greenwood, J. R.; Long, C. A. Rev. Sci. Instrum. 2000, 71, 2959; (b) Seyedyagoobi, J. Rev. Sci. Instrum. 1991, 62, 249.

    3. [3]

      (a) Lee, T. W.; Hegde, N. Combust. Flame 2005, 142, 314; (b) Chung, K.; Cho, J. K.; Park, E. S.; Breedveld, V.; Lu, H. Anal. Chem. 2009, 81, 991.

    4. [4]

      (a) Ring, E. F. J. Infrared Phys. Techn. 2007, 49, 297; (b) Grattan, K. T. V.; Palmer, A. W. Rev. Sci. Instrum. 1985, 56, 1784; (c) Dabiri, D. Exp. Fluids 2009, 46, 191.

    5. [5]

      (a) Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Chem. Soc. Rev. 2013, 42, 7834; (b) Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Nanoscale 2012, 4, 4799; (c) Song, Q. S.; Yang, S. S.; Sheng, R.; Li, T. Acta Chim. Sinica 2014, 72, 89 (in Chinese). (宋秋生, 杨森森, 盛锐, 李谭, 化学学报, 2014, 72, 89.)

    6. [6]

      (a) Liu, J.; Guo, X. D.; Hu, R.; Xu, J.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Anal. Chem. 2015, 87, 3694; (b) Liu, X.; Li, S. Y.; Feng, J.; Li, Y.; Yang, G. Q. Chem. Commun. 2014, 50, 2778; (c) Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S.Nat. Commun. 2012, 3, 705; (d) Feng, J.; Tian, K. J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Zeng, Y.; Li, Y.; Yang, G. Q. Angew. Chem.-Int. Ed. 2011, 50, 8072; (e) Feng, J.; Xiong, L.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Adv. Funct. Mater. 2013, 23, 340; (f) Ebrahimi, S.; Akhlaghi, Y.; Kompany-Zareh, M.; Rinnan, A. ACS Nano 2014, 8, 10372; (g) Zhegalova, N. G.; Dergunov, S. A.; Wang, S. T.; Pinkhassik, E.; Berezin, M. Y. Chem.-Eur. J. 2014, 20, 10292; (h) Hu, X. L.; Li, Y.; Liu, T.; Zhang, G. Y.; Liu, S. Y. ACS Appl. Mater. Interfaces 2015, 7, 15551; (i) Song, Q. S.; Zhou, W.; Wu, X. M.; Wu, F. Acta Chim. Sinica 2016, 74, 435 (in Chinese). (宋秋生, 周稳, 吴新民, 吴凡, 化学学报, 2016, 74, 435.)

    7. [7]

      Ross, D.; Gaitan, M.; Locascio, L. E. Anal. Chem. 2001, 73, 4117.  doi: 10.1021/ac010370l

    8. [8]

      Ye, F.; Wu, C.; Jin, Y.; Chan, Y.-H.; Zhang, X.; Chiu, D. T. J. Am. Chem. Soc. 2011, 133, 8146.  doi: 10.1021/ja202945g

    9. [9]

      Ozawa, A.; Shimizu, A.; Nishiyabu, R.; Kubo, Y. Chem. Commun. 2015, 51, 118.  doi: 10.1039/C4CC07405J

    10. [10]

      (a) Kojima, C.; Irie, K.; Tada, T.; Tanaka, N. Biopolymers 2014, 101, 603; (b) Cakara, D.; Kleimann, J.; Borkovec, M. Macromolecules 2003, 36, 4201.

    11. [11]

      (a) Zeng, Y.; Li, Y. Y.; Li, M.; Yang, G. Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 9100; (b) Zhang, X. H.; Zeng, Y.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Langmuir 2014, 30, 718; (c) Liu, X. Y.; Zeng, Y.; Liu, J.; Li, P.; Zhang, D. S.; Zhang, X. H.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Langmuir 2015, 31, 4386; (d) Li, P.; Zeng, Y.; Chen, J. P.; Li, Y. Y.; Li, Y. Acta Chim. Sinica 2012, 70, 1611 (in Chinese). (李鹏, 曾毅, 陈金平, 李迎迎, 李嫕, 化学学报, 2012, 70, 1611.)

    12. [12]

      Zeng, Y.; Li, Y. Y.; Yuan, Z.; Li, Y. Acta Chim. Sinica 2009, 67, 2714 (in Chinese).
       

    13. [13]

      (a) Baker, G. A.; Baker, S. N.; McCleskey, T. M. Chem. Commun. 2003, 2932; (b) Lou, J. F.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69, 1262.

    14. [14]

      Sehgal, R. K.; Kumar, S. Org. Prep. Proced. Int. 1989, 21, 223.  doi: 10.1080/00304948909356367

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(7)
  • Abstract views(1390)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return