Citation: Wang Chaoqiang, Qiu Feilong, Deng Han, Zhang Xiaoyu, He Ping, Zhou Haoshen. Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials[J]. Acta Chimica Sinica, ;2017, 75(2): 241-246. doi: 10.6023/A16100523 shu

Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials

  • Corresponding author: Zhou Haoshen, pinghe@nju.edu.cn;hszhou@nju.edu.cn
  • Received Date: 4 October 2016
    Revised Date: 22 February 2017

    Fund Project: PAPD of Jiangsu Higher Education Institutions, and the Project on Union of Industry-Study-Research of Jiangsu Province BY2015069-01Project supported by the National Basic Research Program of China 2014CB932302 National Natural Science Foundation of China BK20160068, BK20140055National Natural Science Foundation of China 21673116, 21403107,21373111

Figures(4)

  • Supercapacitors have been regarded as one of the next-generation energy storage devices because of the high power density, excellent cycling performance, long lifespan and easy maintenance. However, its relatively low specific energy hinders its application in the future. Recently, Na-ion based aqueous hybrid supercapacitors have attracted worldwide attention due to its high energy density, environment friendly and low cost. In our work, the Na-ion aqueous hybrid supercapacitor is constructed with NaTi2(PO4)3/C and commercial activated carbon as electrode materials. NaTi2(PO4)3/C nanoparticles with the size of about 40 nm were synthesized by high-temperature solid state reaction method using the NaTi2(PO4)3/C precursor that was prepared through the solution method with Ti(C4H9O)4, NH4H2PO4, Na2CO3 as the raw materials, and citric acid as the carbon source. The electrochemical tests were performed using 1 mol·L-1 Na2SO4 solution as the electrolyte. The carbon-coated NaTi2(PO4)3 electrode delivers the discharge capacity of 122 mAh·g-1 and shows an excellent cycling stability with the retention of 60% of the initial capacity after 1000 cycles at a 10C rate. The supercapacitor was consisted of NaTi2(PO4)3/C anode, AC cathode and 1 mol·L-1 Na2SO4 electrolyte. And the weight ratio of active materials in cathode and anode was 2.2. Cyclic voltammetry, galvanostatic test were employed to study the electrochemical properties of the supercapacitor. The as-fabricated device was then cycled between 0.15~1.4 V with different current density. Our results show the power density of 121.15 W·kg-1 with specific energy of 18.71 Wh·kg-1 at the current density of 0.5 A·g-1. Moreover, the specific energy and power density goes to 14.13 Wh·kg-1 and 2.42 kW·kg-1 at a higher current density of 10 A·g-1. More importantly, the device showed an excellent cycling stability with the retention of 76% after 1000 cycles at a current density of 1 A·g-1. This research shows the designed hybrid supercapacitor has the potential to be used as auxiliary high-power energy storage device for the practical applications.
  • 加载中
    1. [1]

      Miller, J.-R.; Simon, P. Science 2008, 321, 651.

    2. [2]

      Bohlen, O.; Kowal, J.; Sauer, D.-U. J. Power Sources 2007, 172, 468.

    3. [3]

      Ashtiani, C.; Wright, R.; Hunt, G. J. Power Sources 2006, 154, 561. 

    4. [4]

      Simon, P.; Gogotsi. Y. Nat. Mater. 2008, 7, 845.

    5. [5]

      Zhang, Y.; Feng, H.; Wu, X.-B.; Wang, L.-Z.; Zhang, A.-Q.; Xia, T.-C.; Dong, H.-C.; Li, X.-F.; Zhang, L.-S. Int. J. Hydrogen Energ. 2009, 34, 4889.

    6. [6]

      Conway, B.-E. Electrochemical Supercapacitors, Kluwer Academic/Plunum, New York, 1999.

    7. [7]

      He, Y.-M.; Chen, W.-J.; Gao, C.-T.; Zhou, J.-Y.; Li, X.-D.; Xie, E.-Q. Nanoscale 2013, 5, 8799.

    8. [8]

      Akihiko, Y.; Ichiro, T.; Yasuhiro, T.; Atsushi, N. IEEE Transactions On Components, Hybrids, And Manufacturing Technology, 1987, 10, 1.

    9. [9]

      Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Electrochem. Solid-State Lett. 2007, 10, A106.

    10. [10]

      Miller, J.-R.; Outlaw, R.-A.; Holloway, B.-C. Science 2010, 329, 1637.

    11. [11]

    12. [12]

    13. [13]

      Burke, A. J. Power Sources 2000, 91, 37. 

    14. [14]

      Wen, L.-Y.; Mi, Y.; Wang, C.-L.; Fang, Y.-G.; Grote, F.-B.; Zhao, H.-P. Small 2014, 10, 3162.

    15. [15]

      Kim, I.-H.; Kim, K.-B. J. Electrochem. Soc. 2006, 153, A383.

    16. [16]

      Shi, Y.; Pan, L.-J.; Liu, B.-R.; Wang, Y.-Q.; Cui, Y.; Bao, Z.-N.; Yu, G.-H. J. Mater. Chem. A 2014, 2, 6086.

    17. [17]

      Cheng, L.; Liu, H.-J.; Zhang, J.-J.; Xiong, H.-M.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A1472.

    18. [18]

      Li, H.-Q.; Cheng, L.; Xia, Y.-Y. Electrochem. Solid-State Lett. 2005, 8, A433.

    19. [19]

      Wang, Y.-G.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A450.

    20. [20]

      Luo, J.-Y.; Xia, Y.-Y. J. Power Sources 2009, 186, 224. 

    21. [21]

      He, P.; Zhang, X.; Wang, Y.-G.; Cheng, L.; Xia, Y.-Y. J. Electrochem. Soc. 2008, 155, A144.

    22. [22]

      He, P.; Luo, J.-Y.; He, J.-X.; Xia, Y.-Y. J. Electrochem. Soc. 2009, 156, A209.

    23. [23]

      He, P.; Liu, J.-L.; Cui, W.-J.; Luo, J.-Y.; Xia, Y.-Y. Electrochim. Acta 2011, 56, 2351.

    24. [24]

      Slater, M.-D.; Kim, D.; Lee, E.; Johnson, C.-S. Adv. Funct. Mater. 2013, 23, 947.

    25. [25]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.

    26. [26]

      Kim, S.-W.; Seo, D.-H.; Ma, X.-H.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710. 

    27. [27]

      Senthilkumar, B.; Ananya, G.; Ashok, P.; Ramaprabhu, S. Electrochim. Acta 2015, 169, 447.

    28. [28]

      Liu, X.; Zhang, N.; Ni, J.; Gao, L.-J. J. Solid State Electrochem. 2013, 17, 1939.

    29. [29]

      Aravindan, V.; Ling, W.-C.; Hartung, S.; Bucher, N.; Madhavi, S. Chem. Asian J. 2014, 9, 878. 

    30. [30]

      Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y. Nat. Chem. 2010, 2, 760.

    31. [31]

      Li, Z.; Ravnsbæk, D.-B.; Xiang, K.; Chiang, Y.-M. Electrochem. Commun. 2014, 44, 12.

    32. [32]

      Luo, J.-Y.; Liu, J.-L.; He, P.; Xia, Y.-Y. Electrochim. Acta 2008, 53, 8128.

  • 加载中
    1. [1]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(11)
  • Abstract views(1515)
  • HTML views(288)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return