Citation: Liu Ye, Yuan Jun, Zou Yingping, Li Yongfang. Research Progress of the FuranContaining Fused Ring Conjugated Organic Molecules and Polymers[J]. Acta Chimica Sinica, ;2017, 75(3): 257-270. doi: 10.6023/A16090495 shu

Research Progress of the FuranContaining Fused Ring Conjugated Organic Molecules and Polymers

  • Corresponding author: Zou Yingping, yingpingzou@csu.edu.cn
  • Received Date: 17 September 2016

    Fund Project: the National Natural Science Foundation of China 51673205Project of Innovation-driven Plan in Central South University, China 2016CX035the National Natural Science Foundation of China 51173206

Figures(41)

  • Currently, as organic semiconductor materials, thiophene fused ring derivatives and the related polymers have received considerable research and application. Furan has similar chemical structure and electronic properties with thiophene due to the same main group heterocyclic atom in five-membered ring system. But furan and furan derivatives possess smaller aromaticity, higher carrier mobility, higher fluorescence quantum efficiency and better solubility, thus more and more attentions have been paid to the design and synthesis of furan-containing fused rings for the application in organic optoelectronic materials. This paper reviewed the recent research progresses of the synthetic methods, properties and applications of the conjugated organic small molecules and polymers based on the furan-containing fused rings.
  • 加载中
    1. [1]

      Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.; Perepichka, D. F. Chem. Commun. 2011, 47, 1976.  doi: 10.1039/C0CC04699J

    2. [2]

      Gidron, O.; Diskin-Posner, Y.; Bendikov, M. J. Am. Chem. Soc. 2010, 132, 2148.  doi: 10.1021/ja9093346

    3. [3]

      Chen, L.; Tang, X.; Jia, K.; Tang, X. Z. Chin. J. Org. Chem. 2016, 36, 2197.  doi: 10.6023/cjoc201601005

    4. [4]

      Nakano, M.; Mori, H.; Shinamura, S.; Takimiya, K. Chem. Mater. 2011, 24, 190.

    5. [5]

      Qian, D.; Liu, B.; Wang, S.; Himmelberger, S.; Linares, M.; Vagin, M.; Salleo, A. J. Mater. Chem. A 2015, 3, 24349.  doi: 10.1039/C5TA06501A

    6. [6]

      Nakano, M.; Niimi, K.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Org. Chem. 2012, 77, 8099.  doi: 10.1021/jo301438t

    7. [7]

      Nakano, M.; Shinamura, S.; Houchin, Y.; Osaka, I.; Miyazaki, E.; Takimiya, K. Chem. Commun. 2012, 48, 5671.  doi: 10.1039/c2cc31546g

    8. [8]

      Mitsui, C.; Soeda, J.; Miwa, K.; Tsuji, H.; Takeya, J.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 5448.  doi: 10.1021/ja2120635

    9. [9]

      Shinamura, S.; Osaka, I.; Miyazaki, E.; Nakao, A.; Yamagishi, M.; Takeya, J.; Takimiya, K. J. Am. Chem. Soc. 2011, 133, 5024.  doi: 10.1021/ja110973m

    10. [10]

      Nakano, M.; Shinamura, S.; Sugimoto, R.; Osaka, I.; Miyazaki, E.; Takimiya, K. Org. Lett. 2012, 14, 5448.  doi: 10.1021/ol302521d

    11. [11]

      Niimi, K.; Mori, H.; Miyazaki, E.; Osaka, I.; Kakizoe, H.; Takimiya, K.; Adachi, C. Chem. Commun. 2012, 48, 5892.  doi: 10.1039/c2cc31960h

    12. [12]

      Nakahara, K.; Mitsui, C.; Okamoto, T.; Yamagishi, M.; Miwa, K.; Sato, H.; Takeya, J. Chem. Lett. 2013, 42, 654.  doi: 10.1246/cl.130133

    13. [13]

      Nakahara, K.; Mitsui, C.; Okamoto, T.; Yamagishi, M.; Matsui, H.; Ueno, T.; Hirose, Y. Chem. Commun. 2014, 50, 5342.  doi: 10.1039/C3CC47577H

    14. [14]

      Suraru, S. L.; Burschka, C.; Würthner, F. J. Org. Chem. 2013, 79, 128.

    15. [15]

      Ripaud, E.; Demeter, D.; Rousseau, T.; Boucard-Cétol, E.; Allain, M.; Po, R.; Leriche, P.; Roncali, J. Dyes Pigm. 2012, 95, 126.  doi: 10.1016/j.dyepig.2012.03.021

    16. [16]

      Jung, I.; Lee, J. K.; Song, K. H.; Song, K.; Kang, S. O.; Ko, J. J. Org. Chem. 2007, 72, 3652.  doi: 10.1021/jo0625150

    17. [17]

      Anderson, S.; Taylor, P. N.; Verschoor, G. L. Chem.-Eur. J. 2004, 10, 518.  doi: 10.1002/(ISSN)1521-3765

    18. [18]

      Hwu, J. R.; Chuang, K. S.; Chuang, S. H.; Tsay, S. C. Org. Lett. 2005, 7, 1545.  doi: 10.1021/ol050196d

    19. [19]

      Tsuji, H.; Mitsui, C.; Ilies, L.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 11902.  doi: 10.1021/ja074365w

    20. [20]

      Tsuji, H.; Mitsui, C.; Sato, Y.; Nakamura, E. Adv. Mater. 2009, 21, 3776.  doi: 10.1002/adma.v21:37

    21. [21]

      Qiu, B.; Yuan, J.; Zou, Y.; He, D.; Peng, H.; Li, Y.; Zhang, Z. Org. Electron. 2016, 35, 87.  doi: 10.1016/j.orgel.2016.05.010

    22. [22]

      Vecchi, P. A.; Padmaperuma, A. B.; Qiao, H.; Sapochak, L. S.; Burrows, P. E. Org. Lett. 2006, 8, 4211.  doi: 10.1021/ol0614121

    23. [23]

      Han, C.; Xie, G.; Xu, H.; Zhang, Z.; Xie, L.; Zhao, Y.; Huang, W. Adv. Mater. 2011, 23, 2491.  doi: 10.1002/adma.201100322

    24. [24]

      Jeon, S. O.; Lee, J. Y. J. Mater. Chem. 2012, 22, 10537.  doi: 10.1039/c2jm30473b

    25. [25]

      Lee, C. W.; Yook, K. S.; Lee, J. Y. Org. Electron. 2013, 14, 1009.  doi: 10.1016/j.orgel.2013.01.025

    26. [26]

      Deng, L.; Li, J.; Wang, G. X.; Wu, L. Z. J. Mater. Chem. C. 2013, 1, 8140.  doi: 10.1039/c3tc31893a

    27. [27]

      Liu, B.; Chen, X.; He, Y.; Xiao, L.; Li, Y.; Zhou, K.; Zou, Y. RSC Adv. 2013, 3, 5366.  doi: 10.1039/c3ra40268a

    28. [28]

      Shi, S.; Xie, X.; Gao, C.; Shi, K.; Chen, S.; Yu, G.; Wang, H. Macromolecules 2014, 47, 616.  doi: 10.1021/ma402107n

    29. [29]

      Shi, S.; Shi, K.; Chen, S.; Qu, R.; Wang, L.; Wang, M.; Wang, H. J. Polym. Sci., Part A:Polym. Chem. 2014, 52, 2465.  doi: 10.1002/pola.v52.17

    30. [30]

      Huo, L.; Hou, J.; Zhang, S.; Chen, H. Y.; Yang, Y. Angew. Chem., Int. Ed. 2010, 49, 1500.  doi: 10.1002/anie.200906934

    31. [31]

      Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A. J.; Sun, Y. Adv. Mater. 2015, 27, 2938.  doi: 10.1002/adma.v27.18

    32. [32]

      Yuan, J.; Zou, Y.; Cui, R.; Chao, Y. H.; Wang, Z.; Ma, M.; Xiao, D. Macromolecules 2015, 48, 4347.  doi: 10.1021/acs.macromol.5b00564

    33. [33]

      Qiu, B.; Yuan, J.; Xiao, X.; He, D.; Qiu, L.; Zou, Y.; Li, Y. ACS Appl. Mater. Interfaces 2015, 7, 25237.  doi: 10.1021/acsami.5b07066

    34. [34]

      Li, S.; Yuan, Z.; Deng, P.; Sun, B.; Zhang, Q. Polym. Chem. 2014, 5, 2561.  doi: 10.1039/c3py01458d

    35. [35]

      Li, H.; Jiang, P.; Yi, C.; Li, C.; Liu, S. X.; Tan, S.; Decurtins, S. Macromolecules 2010, 43, 8058.  doi: 10.1021/ma101693d

    36. [36]

      Chen, X.; Liu, B.; Zou, Y.; Xiao, L.; Guo, X.; He, Y.; Li, Y. J. Mater. Chem. 2012, 22, 17724.  doi: 10.1039/c2jm32843g

    37. [37]

      Liu, B.; Chen, X.; Zou, Y.; Xiao, L.; Xu, X.; He, Y.; Li, Y. Macromolecules 2012, 45, 6898.  doi: 10.1021/ma301053q

    38. [38]

      Liu, B.; Chen, X.; Zou, Y.; He, Y.; Xiao, L.; Xu, X.; Li, Y. Polym. Chem. 2013, 4, 470.  doi: 10.1039/C2PY20580G

    39. [39]

      Huo, L.; Huang, Y.; Fan, B.; Guo, X.; Jing, Y.; Zhang, M.; Hou, J. Chem. Commun. 2012, 48, 3318.  doi: 10.1039/c2cc17708k

    40. [40]

      Huo, L.; Ye, L.; Wu, Y.; Li, Z.; Guo, X.; Zhang, M.; Hou, J. Macromolecules 2012, 45, 6923.  doi: 10.1021/ma301254x

    41. [41]

      Hong, G.; Zou, Y.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Wu, J. Z. Nat. Commun. 2014, 5.

    42. [42]

      Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Dai, H. Nat. Med. 2012, 18, 1841.  doi: 10.1038/nm.2995

    43. [43]

      Warnan, J.; Cabanetos, C.; Labban, A. E.; Hansen, M. R.; Tassone, C.; Toney, M. F.; Beaujuge, P. M. Adv. Mater. 2014, 26, 4357.  doi: 10.1002/adma.v26.25

    44. [44]

      Mateker, W. R.; Heumueller, T.; Cheacharoen, R.; Sachs-Quintana, I. T.; McGehee, M. D.; Warnan, J.; Bazan, G. C. Chem. Mater. 2015, 27, 6345.  doi: 10.1021/acs.chemmater.5b02341

    45. [45]

      Huo, L.; Liu, T.; Fan, B.; Zhao, Z.; Sun, X.; Wei, D.; Yu, M.; Liu, Y.; Sun, Y. Adv. Mater. 2015, 27, 6969.  doi: 10.1002/adma.201503023

    46. [46]

      Liu, B.; Qiu, B.; Chen, X.; Xiao, L.; Li, Y.; He, Y.; Zou, Y. Polym. Chem. 2014, 5, 5002.  doi: 10.1039/C4PY00392F

    47. [47]

      Huang, W.; Yang, B.; Sun, J.; Liu, B.; Yang, J.; Zou, Y.; Gao, Y. Org. Electron. 2014, 15, 1050.  doi: 10.1016/j.orgel.2014.02.020

    48. [48]

      Bian, L.; Hai, J.; Zhu, E.; Yu, J.; Liu, Y.; Zhou, J.; Tang, W. J. Mater. Chem. A 2015, 3, 1920.  doi: 10.1039/C4TA06140C

    49. [49]

      Shi, Q.; Fan, H.; Liu, Y.; Hu, W.; Li, Y.; Zhan, X. Macromolecules 2011, 44, 9173.  doi: 10.1021/ma2019683

    50. [50]

      Sista, P.; Huang, P.; Gunathilake, S. S.; Bhatt, M. P.; Kularatne, R. S.; Stefan, M. C.; Biewer, M. C. J. Polym. Sci., Part A:Polym. Chem. 2012, 50, 4316.  doi: 10.1002/pola.v50.20

    51. [51]

      Sista, P.; Nguyen, H.; Murphy, J. W.; Hao, J.; Dei, D. K.; Palaniappan, K.; Dastoor, P. C. Macromolecules 2010, 43, 8063.  doi: 10.1021/ma101709h

    52. [52]

      Xiang, A.; Li, H.; Chen, S.; Liu, S. X.; Decurtins, S.; Bai, M.; Liao, J. Nanoscale 2015, 7, 7665.  doi: 10.1039/C5NR00402K

    53. [53]

      Li, Z.; Li, H.; Chen, S.; Froehlich, T.; Yi, C.; Schönenberger, C.; Borguet, E. J. Am. Chem. Soc. 2014, 136, 8867.  doi: 10.1021/ja5034606

    54. [54]

      Kobilka, B. M.; Dubrovskiy, A. V.; Ewan, M. D.; Tomlinson, A. L.; Larock, R. C.; Chaudhary, S.; Jeffries-EL, M. Chem. Commun. 2012, 48, 8919.  doi: 10.1039/c2cc34070d

    55. [55]

      Aeschi, Y.; Li, H.; Cao, Z.; Chen, S.; Amacher, A.; Bieri, N.; Liu, S. X. Org. Lett. 2013, 15, 5586.  doi: 10.1021/ol402787d

    56. [56]

      Fan, L.; Cui, R.; Guo, X.; Qian, D.; Qiu, B.; Yuan, J.; Li, Y.; Huang, W.; Yang, J.; Liu, W.; Xu, X.; Li, L.; Zou, Y. J. Mater. Chem. C 2014, 2, 5651.  doi: 10.1039/c4tc00738g

    57. [57]

      Cui, R.; Zou, Y.; Xiao, L.; Hsu, C. S.; Keshtov, M. L.; Godovsky, D. Y.; Li, Y. Dyes Pigm. 2015, 116, 139.  doi: 10.1016/j.dyepig.2015.01.021

    58. [58]

      Qiu, B.; Cui, R.; Yuan, J.; Peng, H.; Zhang, Z.; Li, Y.; Zou, Y. Phys. Chem. Chem. Phys. 2015, 17, 17592.  doi: 10.1039/C5CP02127H

    59. [59]

      He, D.; Qiu, L.; Zhang, Z.; Li, Y.; Pan, C.; Zou, Y. RSC Adv. 2016, 6, 62923.  doi: 10.1039/C6RA09791J

    60. [60]

      Zhang, H.; Guo, E.; Fang, Y.; Ren, P.; Yang, W. J. Polym. Sci., Part A:Polym. Chem. 2009, 47, 5488.  doi: 10.1002/pola.v47:20

    61. [61]

      Pan, X. X.; Huo, L. J. Chin. J. Org. Chem. 2016, 36, 687.  doi: 10.6023/cjoc201512028

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    15. [15]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(17)
  • Abstract views(1618)
  • HTML views(404)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return