Citation: Wu Zijun, Wang Jian. Decarboxylative 1, 6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis[J]. Acta Chimica Sinica, ;2017, 75(1): 74-79. doi: 10.6023/A16090492 shu

Decarboxylative 1, 6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis

  • Corresponding author: Wang Jian, wangjain2012@tsinghua.edu.cn
  • Received Date: 15 September 2016

    Fund Project: National Natural Science Foundation of China 21672121

Figures(3)

  • α-Arylated and α, α'-diarylated carbonyls are an important class of building blocks and widely found in biologically active natural and unnatural molecules. The most popular approach to access α-arylated and α, α'-diarylated carbonyls involves transition-metal-catalyzed cross-coupling reactions and metal-free coupling reactions, which always request harsh conditions or high catalytic loading. Visible-light photoredox catalysis, a novel and green catalytic strategy, has recently received increasing attention from chemists and been widely applied to organic synthesis in the past years. Inspired by the recent process of the visible light photocatalytic generation and exploration of α-keto acids as the precursor for acyl radical in decarboxylative cou-pling reactions and 1, 4-Michael addition reactions, we found that, however, expand their utilization in more complex systems, such as 1, 6-conjugate addition with electron deficient olefins, remains underdeveloped, particularly due to the difficult to design the appropriate substrate, and the harsh conditions often required for metal-catalyzed redox neutral decarboxylation. Here, we report a photoredox catalytic C-C bond formation reaction that enabled by visible-light. The versatility of this protocol has been portrayed by using a wide range of stable and easily accessible aromatic α-keto acids as well as p-QMs. This synthetic strategy also offers access to 24 kinds of different α-keto-α, α'-diarylated ketones in moderate to excellent yields under mild conditions. A representative procedure for the reaction is as follows:2-oxo-2-phenylacetic acid 1a (0.10 mmol), the p-QM (2, 6-di-tert-butyl-4-(4-methoxybenzylidene) cyclohexa-2, 5-dien-1-one) 2a (0.12 mmol), photocatalyst Ir[dF (CF3) PPy]2(dtbbpy) PF6 (0.001 mmol) and K2HPO4 (0.12 mmol) were dissolved in DCM (1 mL). Then, the resulting mixture was degassed and refilled with N2 via 'freeze-pump-thaw' procedure (3 times). After that, the solution was stirred at a distance of ca. 5 cm from a 36 W blue LEDs at room temperature for about 12 h with TLC monitoring. Upon completion of the reaction, the crude product was purified by flash chromatography on silica gel (hexane/ethyl acetate) to give the desired product 3.
  • 加载中
    1. [1]

    2. [2]

      (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 1108; (b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382; (c) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2002, 41, 953; (d) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234; (e) Burtoloso, A. C. B. Synlett 2009, 2009, 320; (f) Bellina, F.; Rossi, R. Chem. Rev.2010, 110, 1082; (g) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676; (h) Danoun, G.; Tlili, A.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed.2012, 51, 12815

    3. [3]

      (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450; (b) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340; (c) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed.2005, 44, 609; (d) Xia, J.; Brown, L. E.; Konopelski, J. P. J. Org. Chem. 2007, 72, 6885; (e) Mohanan, K.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2012, 14, 4686; (f) Huang, X.; Patil, M.; Farès, C.; Thiel, W.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 7312; (g) More, N. Y.; Jeganmohan, M. Org. Lett. 2014, 16, 804.

    4. [4]

      Ramanjaneyulu, B. T.; Mahesh, S.; Anand, R. V. Org. Lett. 2015, 17, 3952.  doi: 10.1021/acs.orglett.5b01724

    5. [5]

    6. [6]

      (a) Johnson, R. G.; Ingham, K. Chem. Rev. 1956, 56, 219. (b) Rice, F. A. J. Am. Chem. Soc. 1956, 78, 3173; (c) Lampman, G. M.; Aumiller, J. C. Org. Synth. 1971, 51, 106; (d) McKillop, A.; Bromley, D. Tetrahedron Lett. 1969, 10, 1623; (e) Concepciýn, J. I.; Francisco, C. G.; Freire, R.; Hernndez, R.; Salazar, A.; Surez, E. J. Org. Chem. 1986, 51, 402; (f) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861; (g) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258; (h) Barton, D. H. R.; Serebryakov, E. P. Proc. Chem. Soc. 1962, 309; (i) Barton, D. H. R.; Dowlatshahi, H. A.; Motherwell, W. B.; Villemin, D. J. Chem. Soc. Chem. Commun. 1980, 732.

    7. [7]

    8. [8]

      Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502.  doi: 10.1002/anie.v53.2

    9. [9]

      (a) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872. (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374; (c) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.

    10. [10]

      Chu, L.; Lipshultz, J. M.; Macmillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.  doi: 10.1002/anie.201501908

    11. [11]

      Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191.  doi: 10.1002/chem.v21.38

    12. [12]

      Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem. Eur. J. 2016, 22, 2236.  doi: 10.1002/chem.201504530

    13. [13]

      Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.  doi: 10.1021/acs.orglett.5b02392

    14. [14]

      For reviews on the chemistry of p-QMs, see: (a) Turner, A. B. Q. Rev. Chem. Soc. 1964, 18, 347; (b) Peter, M. G. Angew. Chem., Int. Ed. 1989, 28, 555; (c) Toteva, M. M.; Richard, J. P. Adv. Phys. Org. Chem. 2011, 45, 39.

    15. [15]

      Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991.  doi: 10.1021/cr9601425

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(16)
  • Abstract views(952)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return