Citation: Wu Zijun, Wang Jian. Decarboxylative 1, 6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis[J]. Acta Chimica Sinica, ;2017, 75(1): 74-79. doi: 10.6023/A16090492 shu

Decarboxylative 1, 6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis

  • Corresponding author: Wang Jian, wangjain2012@tsinghua.edu.cn
  • Received Date: 15 September 2016

    Fund Project: National Natural Science Foundation of China 21672121

Figures(3)

  • α-Arylated and α, α'-diarylated carbonyls are an important class of building blocks and widely found in biologically active natural and unnatural molecules. The most popular approach to access α-arylated and α, α'-diarylated carbonyls involves transition-metal-catalyzed cross-coupling reactions and metal-free coupling reactions, which always request harsh conditions or high catalytic loading. Visible-light photoredox catalysis, a novel and green catalytic strategy, has recently received increasing attention from chemists and been widely applied to organic synthesis in the past years. Inspired by the recent process of the visible light photocatalytic generation and exploration of α-keto acids as the precursor for acyl radical in decarboxylative cou-pling reactions and 1, 4-Michael addition reactions, we found that, however, expand their utilization in more complex systems, such as 1, 6-conjugate addition with electron deficient olefins, remains underdeveloped, particularly due to the difficult to design the appropriate substrate, and the harsh conditions often required for metal-catalyzed redox neutral decarboxylation. Here, we report a photoredox catalytic C-C bond formation reaction that enabled by visible-light. The versatility of this protocol has been portrayed by using a wide range of stable and easily accessible aromatic α-keto acids as well as p-QMs. This synthetic strategy also offers access to 24 kinds of different α-keto-α, α'-diarylated ketones in moderate to excellent yields under mild conditions. A representative procedure for the reaction is as follows:2-oxo-2-phenylacetic acid 1a (0.10 mmol), the p-QM (2, 6-di-tert-butyl-4-(4-methoxybenzylidene) cyclohexa-2, 5-dien-1-one) 2a (0.12 mmol), photocatalyst Ir[dF (CF3) PPy]2(dtbbpy) PF6 (0.001 mmol) and K2HPO4 (0.12 mmol) were dissolved in DCM (1 mL). Then, the resulting mixture was degassed and refilled with N2 via 'freeze-pump-thaw' procedure (3 times). After that, the solution was stirred at a distance of ca. 5 cm from a 36 W blue LEDs at room temperature for about 12 h with TLC monitoring. Upon completion of the reaction, the crude product was purified by flash chromatography on silica gel (hexane/ethyl acetate) to give the desired product 3.
  • 加载中
    1. [1]

    2. [2]

      (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 1108; (b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382; (c) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2002, 41, 953; (d) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234; (e) Burtoloso, A. C. B. Synlett 2009, 2009, 320; (f) Bellina, F.; Rossi, R. Chem. Rev.2010, 110, 1082; (g) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676; (h) Danoun, G.; Tlili, A.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed.2012, 51, 12815

    3. [3]

      (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450; (b) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340; (c) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed.2005, 44, 609; (d) Xia, J.; Brown, L. E.; Konopelski, J. P. J. Org. Chem. 2007, 72, 6885; (e) Mohanan, K.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2012, 14, 4686; (f) Huang, X.; Patil, M.; Farès, C.; Thiel, W.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 7312; (g) More, N. Y.; Jeganmohan, M. Org. Lett. 2014, 16, 804.

    4. [4]

      Ramanjaneyulu, B. T.; Mahesh, S.; Anand, R. V. Org. Lett. 2015, 17, 3952.  doi: 10.1021/acs.orglett.5b01724

    5. [5]

    6. [6]

      (a) Johnson, R. G.; Ingham, K. Chem. Rev. 1956, 56, 219. (b) Rice, F. A. J. Am. Chem. Soc. 1956, 78, 3173; (c) Lampman, G. M.; Aumiller, J. C. Org. Synth. 1971, 51, 106; (d) McKillop, A.; Bromley, D. Tetrahedron Lett. 1969, 10, 1623; (e) Concepciýn, J. I.; Francisco, C. G.; Freire, R.; Hernndez, R.; Salazar, A.; Surez, E. J. Org. Chem. 1986, 51, 402; (f) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861; (g) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258; (h) Barton, D. H. R.; Serebryakov, E. P. Proc. Chem. Soc. 1962, 309; (i) Barton, D. H. R.; Dowlatshahi, H. A.; Motherwell, W. B.; Villemin, D. J. Chem. Soc. Chem. Commun. 1980, 732.

    7. [7]

    8. [8]

      Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502.  doi: 10.1002/anie.v53.2

    9. [9]

      (a) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872. (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374; (c) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.

    10. [10]

      Chu, L.; Lipshultz, J. M.; Macmillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.  doi: 10.1002/anie.201501908

    11. [11]

      Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191.  doi: 10.1002/chem.v21.38

    12. [12]

      Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem. Eur. J. 2016, 22, 2236.  doi: 10.1002/chem.201504530

    13. [13]

      Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.  doi: 10.1021/acs.orglett.5b02392

    14. [14]

      For reviews on the chemistry of p-QMs, see: (a) Turner, A. B. Q. Rev. Chem. Soc. 1964, 18, 347; (b) Peter, M. G. Angew. Chem., Int. Ed. 1989, 28, 555; (c) Toteva, M. M.; Richard, J. P. Adv. Phys. Org. Chem. 2011, 45, 39.

    15. [15]

      Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991.  doi: 10.1021/cr9601425

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(19)
  • Abstract views(1096)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return