Citation: Wu Zijun, Wang Jian. Decarboxylative 1, 6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis[J]. Acta Chimica Sinica, ;2017, 75(1): 74-79. doi: 10.6023/A16090492 shu

Decarboxylative 1, 6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis

  • Corresponding author: Wang Jian, wangjain2012@tsinghua.edu.cn
  • Received Date: 15 September 2016

    Fund Project: National Natural Science Foundation of China 21672121

Figures(3)

  • α-Arylated and α, α'-diarylated carbonyls are an important class of building blocks and widely found in biologically active natural and unnatural molecules. The most popular approach to access α-arylated and α, α'-diarylated carbonyls involves transition-metal-catalyzed cross-coupling reactions and metal-free coupling reactions, which always request harsh conditions or high catalytic loading. Visible-light photoredox catalysis, a novel and green catalytic strategy, has recently received increasing attention from chemists and been widely applied to organic synthesis in the past years. Inspired by the recent process of the visible light photocatalytic generation and exploration of α-keto acids as the precursor for acyl radical in decarboxylative cou-pling reactions and 1, 4-Michael addition reactions, we found that, however, expand their utilization in more complex systems, such as 1, 6-conjugate addition with electron deficient olefins, remains underdeveloped, particularly due to the difficult to design the appropriate substrate, and the harsh conditions often required for metal-catalyzed redox neutral decarboxylation. Here, we report a photoredox catalytic C-C bond formation reaction that enabled by visible-light. The versatility of this protocol has been portrayed by using a wide range of stable and easily accessible aromatic α-keto acids as well as p-QMs. This synthetic strategy also offers access to 24 kinds of different α-keto-α, α'-diarylated ketones in moderate to excellent yields under mild conditions. A representative procedure for the reaction is as follows:2-oxo-2-phenylacetic acid 1a (0.10 mmol), the p-QM (2, 6-di-tert-butyl-4-(4-methoxybenzylidene) cyclohexa-2, 5-dien-1-one) 2a (0.12 mmol), photocatalyst Ir[dF (CF3) PPy]2(dtbbpy) PF6 (0.001 mmol) and K2HPO4 (0.12 mmol) were dissolved in DCM (1 mL). Then, the resulting mixture was degassed and refilled with N2 via 'freeze-pump-thaw' procedure (3 times). After that, the solution was stirred at a distance of ca. 5 cm from a 36 W blue LEDs at room temperature for about 12 h with TLC monitoring. Upon completion of the reaction, the crude product was purified by flash chromatography on silica gel (hexane/ethyl acetate) to give the desired product 3.
  • 加载中
    1. [1]

    2. [2]

      (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 1108; (b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382; (c) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2002, 41, 953; (d) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234; (e) Burtoloso, A. C. B. Synlett 2009, 2009, 320; (f) Bellina, F.; Rossi, R. Chem. Rev.2010, 110, 1082; (g) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676; (h) Danoun, G.; Tlili, A.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed.2012, 51, 12815

    3. [3]

      (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450; (b) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340; (c) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed.2005, 44, 609; (d) Xia, J.; Brown, L. E.; Konopelski, J. P. J. Org. Chem. 2007, 72, 6885; (e) Mohanan, K.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2012, 14, 4686; (f) Huang, X.; Patil, M.; Farès, C.; Thiel, W.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 7312; (g) More, N. Y.; Jeganmohan, M. Org. Lett. 2014, 16, 804.

    4. [4]

      Ramanjaneyulu, B. T.; Mahesh, S.; Anand, R. V. Org. Lett. 2015, 17, 3952.  doi: 10.1021/acs.orglett.5b01724

    5. [5]

    6. [6]

      (a) Johnson, R. G.; Ingham, K. Chem. Rev. 1956, 56, 219. (b) Rice, F. A. J. Am. Chem. Soc. 1956, 78, 3173; (c) Lampman, G. M.; Aumiller, J. C. Org. Synth. 1971, 51, 106; (d) McKillop, A.; Bromley, D. Tetrahedron Lett. 1969, 10, 1623; (e) Concepciýn, J. I.; Francisco, C. G.; Freire, R.; Hernndez, R.; Salazar, A.; Surez, E. J. Org. Chem. 1986, 51, 402; (f) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861; (g) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258; (h) Barton, D. H. R.; Serebryakov, E. P. Proc. Chem. Soc. 1962, 309; (i) Barton, D. H. R.; Dowlatshahi, H. A.; Motherwell, W. B.; Villemin, D. J. Chem. Soc. Chem. Commun. 1980, 732.

    7. [7]

    8. [8]

      Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502.  doi: 10.1002/anie.v53.2

    9. [9]

      (a) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872. (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374; (c) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.

    10. [10]

      Chu, L.; Lipshultz, J. M.; Macmillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.  doi: 10.1002/anie.201501908

    11. [11]

      Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191.  doi: 10.1002/chem.v21.38

    12. [12]

      Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem. Eur. J. 2016, 22, 2236.  doi: 10.1002/chem.201504530

    13. [13]

      Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.  doi: 10.1021/acs.orglett.5b02392

    14. [14]

      For reviews on the chemistry of p-QMs, see: (a) Turner, A. B. Q. Rev. Chem. Soc. 1964, 18, 347; (b) Peter, M. G. Angew. Chem., Int. Ed. 1989, 28, 555; (c) Toteva, M. M.; Richard, J. P. Adv. Phys. Org. Chem. 2011, 45, 39.

    15. [15]

      Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991.  doi: 10.1021/cr9601425

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(19)
  • Abstract views(975)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return