Citation: Wang Lei, Zhao Dongdong, Liu Xu, Yu Peng, Fu Honggang. Hydrothermal for Synthesis of CoO Nanoparticles/Graphene Composite as Li-ion Battery Anodes[J]. Acta Chimica Sinica, ;2017, 75(2): 231-236. doi: 10.6023/A16090476 shu

Hydrothermal for Synthesis of CoO Nanoparticles/Graphene Composite as Li-ion Battery Anodes

  • Corresponding author: Fu Honggang, fuhg@vip.sina.com
  • Received Date: 6 September 2016
    Revised Date: 21 January 2017

    Fund Project: Harbin science and technology innovation talents research Foundation 2015RAQXJ057application technology research and development projects in Harbin 2013AE4BW051Project supported by the National Natural Science Foundation of China 21371053, 21401048the international science & technology cooperation program of China 2014DFR41110

Figures(6)

  • Nowadays, the clean energy is of special concern researches owing to the unavoidable environmental pollutions. To satisfy the demand of sustainable development strategy, it is necessary to develop high-efficient and portable energy storage and conversion devices. Lithium ion batteries (LIBs) are considered as most promising electrochemical energy storage system in this era and are anticipated to power the mentioned applications. Herein, a facile and effective route has been developed for synthesis of CoO/reduced graphite oxide (RGO) composites as LIB anodes. In the synthesis, the GO prepared by the modified Hummers' method was dissolved into deionized water, and then mixed with Co(NO3)2 solution. Subsequently, the obtained homogeneous solution was transferred into 100 mL Teflon-lined stainless-steel autoclave. The sealed autoclave was putted into an oven at 160℃ for 6 h. After cooled down to room temperature, the precursor of depositions were filtered, washed with deionized water and dried at 80℃. Finally, the precursor was thermal treated at 500℃ for 2 h in a tube furnace under nitrogen ambient to obtain the final product of CoO/RGO composites. The synthetic composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns proved that the composites were composed of CoO and graphene. SEM images indicated the CoO nanoparticles grown on the graphene nanosheets uniformly. The CoO nanoparticles loaded on the surface of graphene nanosheets could prevent the aggregation of graphene. Meanwhile, the graphene nanosheets could combine with each other to form a large 3D electron conductive network, which can promote the electrical conductivity of the composite. The LIB was assembled in glove-box, in which the composite electrode and metal lithium plate were used as the anode and the cathode, respectively. The electrochemical test results imply that the initial discharge specific capacity could be up to 1312.6 mAh·g-1 at a current density of 100 mA·g-1. Notably, the discharge specific capacity is still about 557.4 mAh·g-1 after 300 cycles at a high current density of 10000 mA·g-1. It is demonstrated that the composite exhibits high specific capacity, excellent rate capability and well cyclic stability. The 3D network could be used as a stable framework to accommodate the volume change of active material during Li+ insertion/extraction, which play important role for the superior electrochemical performance.
  • 加载中
    1. [1]

      Nishi, Y. Chem. Rec. 2001, 1, 406.

    2. [2]

      Choi, N.-S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 9994. 

    3. [3]

      Cabana, J.; Monconduit, L.; Larcher, D.; Rosa Palacin, M. Adv. Mater. 2010, 22, E170.

    4. [4]

      Lu, Y.; Wen, Z.; Rui, K.; Wu, X.; Cui, Y. J. Power Sources 2013, 244, 306. 

    5. [5]

      Li, C.; Yin, C.; Mu, X.; Maier, J. Chem. Mater. 2013, 25, 962.

    6. [6]

      Rui, K.; Wen, Z.; Lu, Y.; Shen, C.; Jin, J. ACS Appl. Mater. Interfaces 2016, 8, 1819. 

    7. [7]

      Li, H.; Liang, M.; Sun, W.; Wang, Y. Adv. Funct. Mater. 2016, 26, 1098. 

    8. [8]

      Wang, X.; Liu, B.; Hou, X.; Wang, Q.; Li, W.; Chen, D.; Shen, G. Nano Res. 2014, 7, 1073.

    9. [9]

      Arun, N.; Jain, A.; Aravindan, V.; Jayaraman, S.; Ling, W. C.; Srinivasan, M. P.; Madhavi, S. Nano Energy 2015, 12, 69. 

    10. [10]

      Arun, N.; Aravindan, V.; Ling, W. C.; Madhavi, S. J. Power Sources 2015, 280, 240. 

    11. [11]

      Han, J.-T.; Goodenough, J. B. Chem. Mater. 2011, 23, 3404. 

    12. [12]

      Lu, X.; Jian, Z.; Fang, Z.; Gu, L.; Hu, Y.-S.; Chen, W.; Wang, Z.; Chen, L. Energy Environ. Sci. 2011, 4, 2638.

    13. [13]

      Guo, B.; Yu, X.; Sun, X.-G.; Chi, M.; Qiao, Z.-A.; Liu, J.; Hu, Y.-S.; Yang, X.-Q.; Goodenough, J. B.; Dai, S. Energy Environ. Sci. 2014, 7, 2220.

    14. [14]

      Tang, K.; Mu, X.; PvanAken, A.; Yu, Y.; Maier, J. Adv. Energy Mater. 2013, 3, 49. 

    15. [15]

      Han, J.-T.; Huang, Y.-H.; Goodenough, J. B. Chem. Mater. 2011, 23, 2027. 

    16. [16]

      Jayaraman, S.; Aravindan, V.; Suresh Kumar, P.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. ACS Appl. Mater. Interfaces 2014, 6, 8660. 

    17. [17]

      Fei, L.; Xu, Y.; Wu, X.; Li, Y.; Xie, P.; Deng, S.; Smirnov, S.; Luo, H. Nanoscale 2013, 5, 11102.

    18. [18]

      Jo, C.; Kim, Y.; Hwang, J.; Shim, J.; Chun, J.; Lee, J. Chem. Mater. 2014, 26, 3508.

    19. [19]

      Aravindan, V.; Sundaramurthy, J.; Jain, A.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Srinivasan, M. P.; Madhavi, S. ChemSusChem 2014, 7, 1858. 

    20. [20]

      Cheng, Q.; Liang, J.; Zhu, Y.; Si, L.; Guo, C.; Qian, Y. J. Mater. Chem. A 2014, 2, 17258. 

    21. [21]

      Xie, H.; Park, K.-S.; Song, J.; Goodenough, J. B. Electrochem. Commun. 2012, 19, 135. 

    22. [22]

      Cussen, E. J.; Yi, T. W. S. J. Solid State Chem. 2007, 180, 1832. 

    23. [23]

      Satish, R.; Aravindan, V.; Ling, W. C.; Goodenough, J. B.; Madhavi, S. Adv. Energy. Mater. 2014, 4, 1301715. 

    24. [24]

       

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      Aravindan, V.; Ling, W. C.; Hartung, S.; Bucher, N.; Madhavi, S. Chem. Asian J. 2014, 9, 878. 

    29. [29]

      Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y. Nat. Chem. 2010, 2, 760.

    30. [30]

      Arun, N.; Aravindan, V.; Ling, W. C.; Madhavi, S. J. Alloys Compd. 2014, 603, 48. 

    31. [31]

      Gong, Z.; Yang, Y. Energy Environ. Sci. 2011, 4, 3223.

    32. [32]

      Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113, 6552.

    33. [33]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2009, 22, 587.

    34. [34]

      Son, J. N.; Kim, S. H.; Kim, M. C.; Kim, G. J.; Aravindan, V.; Lee, Y. G.; Lee, Y. S. Electrochim. Acta 2013, 97, 210. 

    35. [35]

      Son, J. N.; Kim, S. H.; Kim, M. C.; Kim, K. J.; Aravindan, V.; Cho, W. I.; Lee, Y. S. J Appl. Electrochem. 2013, 4, 583.

    36. [36]

      Cho, A. R.; Son, J. N.; Aravindan, V.; Kim, H.; Kang, K. S.; Yoon, W. S.; Kim, W. S.; Lee, Y. S. J. Mater. Chem. 2012, 22, 6556. 

    37. [37]

      Son, J. N.; Kim, G. J.; Kim, M. C.; Kim, S. H.; Aravindan, V.; Lee, Y. G.; Lee, Y. S. J. Electrochem. Soc. 2013, 160, A87.

    38. [38]

      Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2012, 1, 107.

    39. [39]

      Zhu, J.; Zhang, G. H.; Yu, X. Z.; Li, Q. H.; Lu, B.; Xu, Z. Nano Energy 2014, 3, 80. 

    40. [40]

      Shen, B.; Zhai, W. T.; Zheng, W. Adv. Funct. Mater. 2014, 24, 4542. 

    41. [41]

      Shu, K. W.; Wang, C. Y.; Wang, M.; Zhao, C.; Wallace, G. G. J. Mater. Chem. A 2014, 2, 1325. 

    42. [42]

      Xu, W.; Xie, Z.; Cui, X.; Zhao, K.; Zhang, L.; Dietrich, G.; Dooley, K. M.; Wang, Y. ACS Appl. Mater. Interfaces 2015, 7, 22533. 

    43. [43]

      Park, G. D.; Kang, Y. C. Chem. Eur. J. 2015, 21, 9179. 

    44. [44]

      Mo, R.; Lei, Z.; Sun, K.; Rooney, D. Adv. Mater. 2014, 26, 2084.

    45. [45]

      Guan, X.; Nai, J.; Zhang, Y.; Wang, P.; Yang, J.; Zheng, L.; Zhang, J.; Guo, L. Chem. Mater. 2014, 26, 5958.

    46. [46]

      Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Adv. Funct. Mater. 2014, 24, 3815. 

    47. [47]

      Yin, L.; Zhang, Z.; Li, Z.; Hao, F.; Li, Q.; Wang, C.; Fan, R.; Qi, Y. Adv. Funct. Mater. 2014, 24, 4176. 

    48. [48]

      Zhou, G.; Wang, D.; Li, F.; Zhang, L.; Li, N.; Wu, Z.; Wen, L.; Lu, G. Q.; Cheng, H. Chem. Mater. 2010, 22, 5306.

    49. [49]

      Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. Nat. Mater. 2006, 5, 567. 

    50. [50]

      Zhou, J.; Song, H.; Ma, L.; Chen, X. RSC Adv. 2011, 1, 782.

    51. [51]

      Zhan, L.; Wang, S.; Ding, L.-X.; Li, Z.; Wang, H. J. Mater. Chem. A 2015, 3, 19711. 

    52. [52]

      Chen, M.; Xia, X.; Qi, M.; Yuan, J.; Yin, J.; Chen, Q. Mater. Res. Bull. 2016, 73, 125. 

    53. [53]

      Jena, A.; Penki, T. R.; Munichandraiah, N.; Shivashankar, S. A. J. Electroanal. Chem. 2016, 761, 21. 

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(15)
  • Abstract views(1412)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return