Citation: Tao Xiongxin, Li Li, Qi Xueqiang, Wei Zidong. Preparation and Electrochemical Properties of Honeycomb-like Pt-Ni-P/Ti Electrode for Methanol Oxidation[J]. Acta Chimica Sinica, ;2017, 75(2): 237-240. doi: 10.6023/A16090460 shu

Preparation and Electrochemical Properties of Honeycomb-like Pt-Ni-P/Ti Electrode for Methanol Oxidation

  • Corresponding author: Wei Zidong, zdwei@cqu.edu.cn
  • Received Date: 1 September 2016
    Revised Date: 19 December 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 21376283 and 21376284

Figures(6)

  • A honeycomb-like metallic catalyst (Pt-Ni-P/Ti) supported on a Ti sheet was prepared by electrodeposition-displacement method. The Ni-P amorphous alloy was first electrodeposited on the Ti substrate, and then replaced by displacement of Ni in amorphous Ni-P with H2PtCl6. The morphology and methanol oxidation performance of the prepared catalyst were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), anodic linear sweep voltammetry (LSV), cyclic voltammetry (CV), and the anodic stripping of a pre-adsorbed CO monolayer. The SEM results show that the Pt-Ni-P nanoparticles obtained by displacement of Ni in amorphous Ni-P with H2PtCl6 had a honeycomb-like porous structure, while the Pt-Ni nanoparticles had a wheat-like structure. The formation of the honeycomb-like porous structure can be explained by the so-called "out-situ dissolution-deposition mechanism", in which the metallic Ni in Ni-P/Ti electrode preferentially dissolve to form pore structure and release electron. The released electrons can be captured by the PtCl62- ion adsorbed on the surface of Ni-P and reduced on the surface of Ni-P to form Pt shell, thereby forming a honeycomb-like pore structure. For the Pt-Ni/Ti electrode, the formation of wheat-like structure Pt-Ni nanoparticles can be explained by a so-called "in-situ dissolution-deposition mechanism", in which the Pt replacement reaction can only occur at the surface of Ni, and the replacement Pt monolayer can prevent the further chemical substitution of Pt on Ni, thereby forming a wheat-like structure. The electrochemical test results show that the methanol oxidation and CO oxidation onset potential on Pt-Ni-P/Ti electrode in alkaline solution is more negative than that on Pt-Ni/Ti electrode, indicating that P incorporation can significantly enhance the methanol oxidation activity and CO-tolerance. Moreover, the unique honeycomb-like porous structure is beneficial to the fast mass transportation during the catalytic reaction. The combination of compositionally and geometrically favorable factors provides a new avenue to design new electrocatalysts with excellent methanol oxidation activity and CO-tolerance.
  • 加载中
    1. [1]

      Wang, L.; Nemoto, Y.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 9674. 

    2. [2]

      Yang, L. L.; Sun, H.; Wang, S. L.; Jiang, L. H.; Sun. G. Q. J. Power Sources 2012, 219, 193. 

    3. [3]

      Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. Angew. Chem., Int. Ed. 2010, 49, 411. 

    4. [4]

    5. [5]

      Shimizu, T.; Momma, T.; Mohamedi, M.; Osaka, T.; Sarangapani, S. J. Power Sources 2004, 117, 277.

    6. [6]

    7. [7]

      Kerres, J. A. J. Membr. Sci. 2001, 185, 3. 

    8. [8]

      Schaffer, T.; Hacker, V.; Hejze, T.; Tschinder, T.; Besenhard, J. O. J. Power Sources 2005, 145, 188.

    9. [9]

    10. [10]

      Shobba, T.; Mayanna, S. M.; Sequeira, C. A. C. J. Power Sources 2002, 108, 261. 

    11. [11]

      Nie, M.; Tang, H. L.; Wei, Z. D.; Jiang, S. P.; Shen, P. K. Electrochem. Commun. 2007, 9, 2375. 

    12. [12]

    13. [13]

      Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. J. Phys. Chem. C 2007, 111, 10382. 

    14. [14]

      Abdel Rahim, M. A.; Abdel Hameed, R. M.; Khalil, M. W. J. Power Sources 2004, 135, 42. 

    15. [15]

      Smith, G. V.; Brower, W. E.; Matyjaszczyk, M. S. Proceedings of the Seventh International Congress on Catalysis, Eds.:Seiyana, T.; Tanabe, K., Elsevier, New York, 1981, p. 355.

    16. [16]

      Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. Energy Environ. Sci. 2014, 7, 1628. 

    17. [17]

      Xue, X.; Ge, J.; Tian, T.; Liu, C.; Xing, W.; Lu, T. J. J. Power Sources 2007, 172, 560. 

    18. [18]

      Chen, S. G.; Xu, Y.; Wei, Z. D.; Li, L.; Qi, X. Q.; Guo, L.; Ding, W.; Xia, M. R. Recent Patents on Corrosion Science 2012, 2, 42.

    19. [19]

      Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. J. Am. Chem. Soc. 2012, 134, 5730. 

    20. [20]

    21. [21]

      Wei, Z. D.; Yan, A. Z.; Feng, Y. C.; Li, L.; Sun, C. X.; Shao, Z. G.; Shen, P. K. Electrochem. Commun. 2007, 9, 2709. 

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    9. [9]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    12. [12]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(4)
  • Abstract views(792)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return