Citation: Chen Xin, Yan Huijun, Xia Dingguo. Germanium Nanotube as the Catalyst for Oxygen Reduction Reaction: Performance and Mechanism[J]. Acta Chimica Sinica, ;2017, 75(2): 189-192. doi: 10.6023/A16080451 shu

Germanium Nanotube as the Catalyst for Oxygen Reduction Reaction: Performance and Mechanism

  • Corresponding author: Xia Dingguo, dgxia@pku.edu.cn
  • Received Date: 29 August 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos. 51602270, 51671004

Figures(3)

  • One of the major technical barriers to the commercialization of proton exchange membrane fuel cells is the high cost of Pt-based oxygen reduction reaction (ORR) electrocatalysts. In this paper, the ORR catalytic performance and the possible mechanism on (5,5) germanium nanotube (GeNT) were studied by density functional theory methods using DZP basis set. The results indicate that the ORR on the GeNT may undergo three mechanisms including O2 dissociation, OOH dissociation and H2O2 dissociation. For any of the above mechanism, the whole process could easily take place on the GeNT with a complete 4e- ORR pathway. The adsorption properties of the ORR intermediates, especially for O and OH, are also very important for evaluating the catalytic performance. The calculated adsorption energies of the above species are -4.33 and -2.21 eV respectively, much close to those on the Pt. Furthermore, the adsorption energy of H2O on the GeNT is only -0.05 eV, much weaker than the O2 binding, indicating the catalytic cycle of ORR could repeat most easily on the GeNT. Therefore, both the reaction energies of the ORR steps and the adsorption energies of ORR intermediates show that the current GeNT model has the catalytic performance similar to that of precious Pt catalyst. Furthermore, the solvent effect was also studied by using three-water-molecule clusters as the real solvent. The obtained results indicate that the solvent effect could affect the geometrical structure of some adsorbed ORR intermediates, such as atomic O. This would lead to the decrease of the heat loss during the O2 dissociation mechanism. The decreased heat loss would accelerate the following electron transfer steps, due to the fact that an effective electrocatalyst must make the energy loss as small as possible for non-electron-transfer step, in which case the cathode electrocatalyst would deliver all the Gibbs energy of the ORR as electrical work. With solvation, the heat loss is slightly increased from *O2 to *OOH, and decreased from *OOH to *OH in the H2O2 dissociation mechanism, which are also more favorable for ORR.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. 

    4. [4]

      Cao, R.; Lee, J. S.; Liu, M.; Cho, J. Adv. Energy Mater. 2012, 2, 816. 

    5. [5]

      Bashyam, R.; Zelenay, P. Nature 2006, 443, 63.

    6. [6]

      Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443.

    7. [7]

      Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324, 71. 

    8. [8]

      Kattel, S.; Wang, G. J. Phys. Chem. Lett. 2014, 5, 452. 

    9. [9]

      An, L.; Huang, W.; Zhang, N.; Chen, X.; Xia, D. J. Mater. Chem. A 2014, 2, 62. 

    10. [10]

      Cao, B.; Veith, G. M.; Diaz, R. E.; Liu, J.; Stach, E. A.; Adzic, R. R.; Khalifah, P. G. Angew. Chem., Int. Ed. 2013, 52, 10753. 

    11. [11]

      Chen, X.; Qiao, Q.; An, L.; Xia, D. J. Phys. Chem. C 2015, 119, 11493. 

    12. [12]

      Chen, X.; Chen, S.; Wang, J. Appl. Surf. Sci. 2016, 379, 291. 

    13. [13]

      Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 4394. 

    14. [14]

      Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A. Phys. Chem. Chem. Phys. 2013, 15, 5771. 

    15. [15]

      Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A. Electrochim. Acta 2013, 106, 472.

    16. [16]

      Seifert, G.; Köhler, T.; Hajnal, Z.; Frauenheim, T. Solid State Commun. 2001, 119, 653.

    17. [17]

      Alam, K. M.; Ray, A. K. Nanotechnology 2007, 18, 495706. 

    18. [18]

      Rathi, S. J.; Ray, A. K. Nanotechnology 2008, 19, 335706. 

    19. [19]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. 

    20. [20]

      Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Nat. Chem. 2009, 1, 552. 

    21. [21]

      Lee, K. R.; Jung, Y.; Woo, S. I. ACS Comb. Sci. 2012, 14, 10. 

    22. [22]

      Chen, R.; Li, H.; Chu, D.; Wang, G. J. Phys. Chem. C 2009, 113, 20689. 

    23. [23]

      Sha, Y.; Yu, T. H.; Liu, Y.; Merinov, B. V.; Goddard, W. A. J. Phys. Chem. Lett. 2010, 1, 856. 

    24. [24]

      Han, B. C.; Miranda, C. R.; Ceder, G. Phys. Rev. B 2008, 77, 075410. 

    25. [25]

      Anderson, A. B. Phys. Chem. Chem. Phys. 2012, 14, 1330. 

    26. [26]

      te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931. 

    27. [27]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. 

    28. [28]

      Zhang, L.; Xia, Z. J. Phys. Chem. C 2011, 115, 11170. 

    29. [29]

      del Cueto, M.; Ocon, P.; Poyato, J. M. L. J. Phys. Chem. C 2015, 119, 2004. 

    30. [30]

      Ou, L.; Yang, F.; Liu, Y.; Chen, S. J. Phys. Chem. C 2009, 113, 20657. 

    31. [31]

      Roudgar, A.; Eikerling, M.; van Santen, R. Phys. Chem. Chem. Phys. 2010, 12, 614.

    32. [32]

      Fang, Y. H.; Liu, Z. P. J. Phys. Chem. C 2009, 113, 9765.

    33. [33]

      Hamada, I.; Morikawa, Y. J. Phys. Chem. C 2008, 112, 10889.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(4)
  • Abstract views(970)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return