Citation: Huang Yuzhang, Lei Luoqi, Zheng Chao, Wei Bo, Zhao Zujin, Qin Anjun, Hu Rongrong, Tang Ben Zhong. Tetraphenylethene-Containing Alkynone Derivatives: Design and Synthesis, Aggregation-Induced Emission Characteristics, and the Selective Fluorescence Detection of Pd2+[J]. Acta Chimica Sinica, ;2016, 74(11): 885-892. doi: 10.6023/A16080435 shu

Tetraphenylethene-Containing Alkynone Derivatives: Design and Synthesis, Aggregation-Induced Emission Characteristics, and the Selective Fluorescence Detection of Pd2+

  • Corresponding author: Hu Rongrong, msrrhu@scut.edu.cn Tang Ben Zhong, tangbenz@ust.hk
  • Received Date: 25 August 2016

    Fund Project: National Basic Research Program of China 973 Program; 2013CB834701the Innovation and Technology Commission ITC-CNERC14S01the Guangdong Natural Science Funds 2016A030306045the Fundamental Research Funds for the Central Universities 2015ZY013and the Guangdong Innovative Research Team Program 201101C0105067115the National Natural Science Foundation of China 21404041the National Natural Science Foundation of China 21490573the National Natural Science Foundation of China 21490574the Fundamental Research Funds for the Central Universities 2015ZJ002

Figures(6)

  • Organic luminescent materials with aggregation-induced emission (AIE) characteristics have attracted much attention among the scientists in the fields of optoelectronic devices and fluorescence biotechnology. AIE materials overcomes the aggregation-caused quenching problem of traditional organic fluorescent compounds, which possess high fluorescence quantum efficiency in the aggregated states. Thanks to the great research effort of worldwide scientists, a large variety of AIE materials have been developed and the underlying mechanism has been rapidly explored. The deep understanding of the structure-property relationship of AIE compounds is still in an urgent demand for the design of new materials. In this work, based on the classical propeller-shaped AIEgen, tetraphenylethene (TPE), we designed and synthesized a series of electron donor/acceptor-containing alkynone derivatives with AIE feature such as cyano, nitro, butyl and butoxyl groups-substituted alkynone derivatives. Their chemical structures have been fully characterized by 1H NMR, 13C NMR, IR, and HRMS spectra, providing satisfactory analysis results. Their photophysical properties are systematically studied and the effect of substitution groups on the emission maximum, emission efficiency, as well as AIE property are discussed, respectively. Their emission maxima are located at 511~565 nm with the fluorescence quantum yields of up to 31% in the aggregated states in THF/water mixtures with high water content. The fluorescence intensity of the unsubstituted TPE-containing alkynone derivative in THF/H2O with φw=90% water content is 157 times higher than that in THF solution. It is suggested that both electron-donating and electron-withdrawing substitution groups on the terminal phenyl ring decrease the emission efficiency of the aggregated state and the introduction of nitro group dramatically quenches the emission while redshifts the emission maximum. Most importantly, the alkynone groups in these compounds can selectively coordinate with Pd2+ among a large variety of metal ions, which quench the emission of the nanoaggregates and possess high sensitivity towards Pd2+, demon-strating the potential application as an efficient Pd2+ fluorescent sensor.
  • 加载中
    1. [1]

      Chen, H. C.; Ching, K. C.; Fang, M. H.; Ching, F. S.; Pi, T. C.; Chin, H. L. Adv. Funct. Mater. 2009, 19, 560. (b) You, S.; Cai, Q.; Zheng, Y.; He, B.; Shen, J.; Yang, W.; Yin, M. ACS Appl. Mater. Interfaces 2014, 6, 16327.

    2. [2]

      Jenekhe, S. A.; Osaheni, J. A. Science 1994, 265, 765. (b) Chen, C. T. Chem. Mater. 2004, 16, 4389.

    3. [3]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.
       

    4. [4]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.
       

    5. [5]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    6. [6]

      Li, S.; Langenegger, S. M.; Häner, R. Chem. Commun. 2013, 49, 5835.  doi: 10.1039/c3cc42706d

    7. [7]

      Singh, A.; Lim, C. K.; Lee, Y. D.; Maeng, J. H.; Lee, S.; Koh, J.; Kim, S. ACS Appl. Mater. Interfaces 2013, 5, 8881. (b) Xi, W.; Gong, Y.; Mei, B.; Zhang, X.; Zhang, Y.; Chen, B.; Wu, J.; Tian, Y.; Zhou, H. Sensors and Actuators B 2014, 205, 158.

    8. [8]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Lu, R. Acta Chim. Sinica 2016, 74, 165. (孙静波, 张恭贺, 贾小宇, 薛鹏冲, 贾俊辉, 卢然, 化学学报, 2016, 74, 165.) (b) Jackson, S. L.; Rananaware, A.; Rix, C.; Bhosale, S. V.; Latham, K. Cryst. Growth Des. 2016, 16, 3067.

    9. [9]

      Aldred, M. P.; Li, C.; Zhang, G. F.; Gong, W. L.; Li, A. D.; Dai, Y.; Ma, D.; Zhu, M. Q. J. Mater. Chem. 2012, 22, 7515.  doi: 10.1039/c2jm30261f

    10. [10]

      Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899. (b) Wu, P. T.; Kim, F. S.; Jenekhe, S. A. Chem. Mater. 2011, 23, 4618. (c) Ahmed, E.; Subramaniyan, S.; Kim, F. S.; Xin, H.; Jenekhe, S. A. Macromolecules 2011, 44, 7207. (d) Ahmed, E.; Ren, G.; Kim, F. S.; Hollenbeck, E. C.; Jenekhe, S. A. Chem. Mater. 2011, 23, 4563.

    11. [11]

      Kim, E.; Park, S. B. Chem. Asian J. 2009, 4, 1646. (b) Tao, S.; Li, L.; Yu, J.; Jiang, Y.; Zhou, Y.; Lee, C. S.; Lee, S. T.; Zhang, X.; Kwon, O. Chem. Mater. 2009, 21, 1284. (c) Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351. (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.)

    12. [12]

      Zhao, Q.; Zhang, X. A.; Wei, Q.; Wang, J.; Shen, X. Y.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2012, 48, 11671. (b) Yu, W.; Wu, Y.; Chen, J.; Duan, X.; Jiang, X. F.; Qiu, X.; Li, Y. RSC Adv. 2016, 6, 51257.

    13. [13]

      Cho, D. G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647. (b) Kielhorn, J.; Melber, C.; Keller, D.; Mangelsdorf, I. Int. J. Hyg. Environ. Health 2002, 205, 417.

    14. [14]

      Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780. (b) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev. 2013, 113, 192.

    15. [15]

      Chen, X.; Li, H.; Jin, L.; Yin, B. Tetrahedron Lett. 2014, 55, 2537. (b) Cui, H.; Chen, H.; Pan, Y.; Lin, W. A. Sensors and Actuators B 2015, 219, 232.

    16. [16]

      Wang, Z.; Lu, X. Chem. Commun. 1996, 535.

    17. [17]

      Yuan, W. Z.; Yu, Z. Q.; Tang, Y.; Lam, J. W.; Xie, N.; Lu, P.; Chen, E. Q.; Tang, B. Z. Macromolecules 2011, 44, 9618.  doi: 10.1021/ma2021979

    18. [18]

      Liu, J.; Zhong, Y.; Lu, P.; Hong, Y.; Hong, Y.; Lam, J. W.; Faisal, M.; Yu, Y.; Wong, K. S.; Tang, B. Z. Polym. Chem. 2010, 1, 426.  doi: 10.1039/c0py00046a

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

Metrics
  • PDF Downloads(0)
  • Abstract views(1705)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return