Citation: Li Wanfei, Ma Qian, Zheng Zhaozhao, Zhang Yuegang. Preparation of Three-dimensional Nitrogen-doped Carbon Nanoribbon and Application in Lithium/Sulfur Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 225-230. doi: 10.6023/A16080434 shu

Preparation of Three-dimensional Nitrogen-doped Carbon Nanoribbon and Application in Lithium/Sulfur Batteries

  • Corresponding author: Zhang Yuegang, ygzhang2012@sinano.ac.cn
  • Received Date: 25 August 2016
    Revised Date: 5 December 2016

    Fund Project: Project supported by the Natural Science Foundation of China 21433013, 51402345, 21403287Suzhou Science and Technology Development Program ZXG2013002, SYG201532

Figures(11)

  • Lithium/sulfur (Li-S) batteries have recently attracted intensive research interests due to their high theoretical specific energy of 2600 W·h·kg-1. However, the poor electronic conductivity of sulfur and the high solubility of polysulfides in organic electrolytes lead to poor cycling stability and rate capability. Herein, we report a three-dimensional (3D) nanocomposite network made from nitrogen-doped carbon nanoribbon (NCNB) and nitrogen-doped graphene (NG), which has a high electronic conductivity and can serve as a conductive matrix and a sulfur immobilizer for the sulfur cathode. The NCNB is prepared by thermal nitridation of a unique 3D phenolic resin (PHF) isolated from the polycondensation reaction of 1,4-hydroquinone and formaldehyde. The N content of NCNB-NG can reach as high as 9.7 wt%. Although three types of N bonding geometries, including pyridinic N, pyrrolic N, and graphitic N, are identified in the NCNB-NG composites, we found the pyridinic N is dominant, which facilitates the trapping of intermediate lithium polysulfides. The sulfur was loaded on NCNB-NG by using a Na2S2O3 solution as sulfur source. The scanning electron microscope (SEM) images show that almost no large S particle can be observed in the as-prepared S@NCNB-NG nanocomposites, suggesting a uniform coating of S on the NCNB-NG networks. The transmission electron microscopic (TEM) images and the elemental mapping by Energy-Dispersive X-ray (EDX) analysis also show that nano-sized S particles are uniformly distributed on the NCNB-NG matrix. The as-obtained S@NCNB-NG cathode can deliver a high specific capacity of 1338 mA·h·g-1 at 0.05 C with about 80% S utilization. It also exhibits excellent rate capability and good cycle stability with a retained specific capacity of 556 mA·h·g-1 after 300th cycles. These performances are much higher than the control samples using the S@NCNB and the S@PHF nanocomposites as cathodes. The improved performance can be attributed to the unique microstructure and the improved electronic conductivity of the NCNB-NG matrix.
  • 加载中
    1. [1]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 172.

    2. [2]

      Wang, D. W.; Zhou, G.; Li, F.; Wu, K. H.; Lu, G. Q.; Cheng, H. M.; Gentle, I. R. Phys. Chem. Chem. Phys. 2012, 14, 8703. 

    3. [3]

      Song, M.-K.; Cairns, E. J.; Zhang, Y. G. Nanoscale 2013, 5, 2186. 

    4. [4]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.

    5. [5]

      Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969.

    6. [6]

    7. [7]

      Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescub, M.; Offer, G. J. Energy Environ. Sci. 2015, 8, 3477. 

    8. [8]

      Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. 

    9. [9]

      Liang, C.; Dudney, N. J.; Howe, J. Y. Chem. Mater. 2009, 21, 4724. 

    10. [10]

      Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Nano Lett. 2011, 11, 2644. 

    11. [11]

      Cao, Y. L.; Li, X. L.; Aksay, I. A.; Lemmon, J.; Nie, Z. M.; Yang, Z. G.; Liu, J. Phys. Chem. Chem. Phys. 2011, 13, 7660. 

    12. [12]

      Guo, J. C.; Xu, Y. H.; Wang, C. S. Nano Lett. 2011, 11, 4288. 

    13. [13]

      Wei, S. C.; Zhang, H.; Huang, Y. Q.; Wang, W. K.; Xia, Y. Z.; Yu, Z. B. Energy Environ. Sci. 2011, 4, 736. 

    14. [14]

      He, G.; Ji, X.; Nazar, L. Energy Environ. Sci. 2011, 4, 2878.

    15. [15]

      Song, M. K.; Zhang, Y. G.; Cairns, E. J. Nano Lett. 2013, 13, 5891. 

    16. [16]

      Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H.; Yang, S. H.; Duan, W. H.; Ye, Y. F.; Guo, J. H.; Zhang, Y. G. Nano Lett. 2014, 14, 4821. 

    17. [17]

      Pope, M. A.; Aksay, I. A. Adv. Energy Mater. 2015, 5, 1500124. 

    18. [18]

      Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. Nat. Commun. 2013, 4, 1481. 

    19. [19]

    20. [20]

      Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M. Adv. Energy Mater. 2015, 5, 1500117. 

    21. [21]

      Bauer, I.; Thieme, S.; Brückner, J.; Althues, H.; Kaskel, S. J. Power Sources 2014, 251, 417. 

    22. [22]

      Chung, S. H.; Manthiram, A. Adv. Mater. 2014, 26, 1360.

    23. [23]

      Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Energy Environ. Sci. 2014, 7, 347.

    24. [24]

      Zhang, Z. Y.; Lai, Y. Q.; Zhang, Z. A.; Zhang, K.; Li, J. Electrochim. Acta 2014, 129, 55.

    25. [25]

      Chung, S. H.; Manthiram, A. J. Phys. Chem. Lett. 2014, 5, 1978. 

    26. [26]

      Huang, J. Q.; Zhang, Q.; Wei, F. Energy Storage Mater. 2015, 1, 127. 

    27. [27]

      Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. ACS Nano 2015, 9, 3002. 

    28. [28]

      Zhang, Y.; Gu, H.; Iijima, S. Appl. Phys. Lett. 1998, 73, 3827.

    29. [29]

      Zhang, Y.; Iijima, S. Appl. Phys. Lett. 1999, 75, 3087.

    30. [30]

      Scott, C. D.; Arepalli, S.; Nikolaev, P.; Smalley, R. E. Appl. Phys. A-Mater. Sci. & Proc. 2001, 72, 573. 

    31. [31]

      Zhu, H. W.; Li, X. S.; Jiang, B.; Xu, C. L.; Zhu, Y. F.; Wu, D. H. Chem. Phys. Lett. 2002, 366, 664. 

    32. [32]

      Lange, H.; Sioda, M.; Huczko, A.; Zhu, Y. Q.; Kroto, H. W.; Walton, D. R. M. Carbon 2003, 41,1617. 

    33. [33]

      Guo, J.; Wang, X.; Yao, Y.; Yang, X.; Liu, X.; Xu, B. Mater. Chem. Phys. 2007, 105, 175.

    34. [34]

      Dong, X. C.; Li, B.; Wei, A.; Cao, X. H.; Chan-Park, M. B.; Zhang, H.; Li, L. J.; Huang, W.; Chen, P. Carbon 2011, 49, 2944.

    35. [35]

      Choi, H.; Kim, H.; Hwang, S.; Kang, M.; Jung, D. W.; Jeon, M. Scripta Mater. 2011, 64, 601. 

    36. [36]

      Poh, H. L.; Sanek, F.; Ambrosi, A.; Zhao, G.; Sofer, Z.; Pumera, M. Nanoscale 2012, 4, 3515.

    37. [37]

      Chen, J.; Yao, B. W.; Li, C.; Shi, G. Q. Carbon 2013, 64, 225. 

    38. [38]

      Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. Nat. Nanotech. 2014, 9, 187.

    39. [39]

      Yang, C.; Yin, Y.; Ye, H.; Jiang, K.; Zhang, J.; Guo, Y. ACS Appl. Mater. Interfaces 2014, 6, 8789. 

    40. [40]

      Qiu, Y.; Zhang, X.; Yang, S. H. Phys. Chem. Chem. Phys. 2011, 13, 12554. 

    41. [41]

      Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. J. Am. Chem. Soc. 2009, 131, 15939. 

    42. [42]

      Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu, W. C.; Qian, W. Z.; Wei, F. Nano Energy 2013, 2, 314. 

    43. [43]

      Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. ACS Nano 2014, 8, 9295. 

    44. [44]

      Li, H. F.; Yang, X. W.; Wang, X. M.; Liu, M. N.; Ye, F. M.; Wang, J.; Qiu, Y. C.; Li, W. F.; Zhang, Y. G. Nano Energy 2015, 12, 468. 

    45. [45]

      Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20, 9821. 

    46. [46]

      Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Nano Res. 2016, 9, 94. 

    47. [47]

      Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. J. Am. Chem. Soc. 2008, 130, 5856. 

    48. [48]

      Dai, K.; Lu, L. H.; Liu, Q.; Zhu, G. P.; Wei, X. Q.; Bai, J.; Xuan, L. L.; Wang, H. Dalton Trans. 2014, 43, 6295. 

    49. [49]

      Weng, W.; Pol, V. G.; Amine, K. Adv. Mater. 2013, 25, 1608.

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(3)
  • Abstract views(774)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return