Citation: Ji Guang, Yan Lulin, Wang Hui, Ma Lian, Xu Bin, Tian Wenjing. Efficient Near-infrared AIE Nanoparticles for Cell Imaging[J]. Acta Chimica Sinica, ;2016, 74(11): 917-922. doi: 10.6023/A16080430 shu

Efficient Near-infrared AIE Nanoparticles for Cell Imaging

  • Corresponding author: Xu Bin, xubin@jlu.edu.cn Tian Wenjing, wjtian@jlu.edu.cn
  • Received Date: 24 August 2016

    Fund Project: the Natural Science Foundation of China 21221063and Program for Chang Jiang Scholars and Innovative Research Team in University IRT101713018the Natural Science Foundation of China 51573068the Natural Science Foundation of China 51373063Project supported by 973 Program 2013CB834701

Figures(8)

  • Near-infrared fluorescence signals are highly desirable to acheieve high resolution in biological imaging. We encapsulated hydrophobic AIE (aggregation-induced emission) fluorophores into the biocompatible Pluronic F-127 NPs for cellular imaging and efficiently enhance the near-infrared AIE fluorophore emission. AIE molecule 2-(4-bromophenyl)-3-(4-(4-(diphenylamino) styryl) phenyl) fumaronitrile (TPABDFN) with near-infrared emission was synthesized and selected as the fluorescence resonance energy transfer (FRET) acceptor. (2-p-tolylethene-1, 1, 2-triyl) tribenzene (TPE-Me) was a blue-emitting AIE molecule, which spectrum was matching with TPABDFN. TPE-Me@F127 NPs emission was 480 nm, TPABDFN@F127 NPs maximum absorption wavelength was also 480 nm, that the absorption had a large area of overlapping with the TPE-Me@F127 NPs emission spectrum and leaded to efficient energy transfer, so TPE-Me was selected as the FRET donor. By encapsulating both TPE-Me donor and TPABDFN acceptor simultaneously within the NPs, a significant FRET effect was induced. FRET pairs of different ratios was co-encapsulated into the F127 NPs to optimize the fluorescence signals. The maximum of fluorescence quantum yield was 19.9%, energy transfer efficiency was 43.5%. TPABDFN@F127 NPs only had weak fluorescence, but the TPABDFN/TPE-Me@F127 NPs showed bright fluorescence signal. Fluorescence resonance energy transfer contributed to the notable increase of acceptor emission The fluorescence quantum yield had 10-fold enhancement of the TPABDFN. In addition, the obtained TPABDFN/TPE-Me@F127 NPs showed a large Stokes shift of 265 nm, which can be used to avoid the interference between excitation and emission light, as well as the near-infrared emission spectrum away from the organism auto-fluorescence, which was beneficial for the bio-application. Fluorescent probe emission in the far red/near-infrared (FR/NIR) (650~900 nm) region for biological detection also can greatly reduce the damage to living body. And TPABDFN/TPE-Me@F127 NPs had low cytotoxicity, good biocompatibility, stability and anti-photobleaching. The TPABDFN/TPE-Me@F127 NPs achieved good imaging result on HepG2 cell cytoplasm.
  • 加载中
    1. [1]

      Luo, S.; Zhang, E.; Su, Y. Biomaterials 2011, 32, 7127.  doi: 10.1016/j.biomaterials.2011.06.024

    2. [2]

      Frangioni, J. V. Curr. Opin. Chem. Biol. 2003, 7, 626.  doi: 10.1016/j.cbpa.2003.08.007

    3. [3]

      Liu, J.; Geng, J.; Liu, B. Chem. Commun. 2013, 49, 1491.  doi: 10.1039/C2CC37219C

    4. [4]

      Ghoroghchian, P. P.; Frail, P. R.; Susumu, K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 2922.  doi: 10.1073/pnas.0409394102

    5. [5]

      Geng, J.; Li, K.; Pu, K. Y. Small 2012, 8, 2421.  doi: 10.1002/smll.v8.15

    6. [6]

      He, X.; Wang, K.; Cheng, Z. WIRES Nanomed Nano 2010, 2, 349.  doi: 10.1002/wnan.85

    7. [7]

      Lu, H. G.; Xu, B.; Tian, W. J. Angew. Chem. Int. Ed. 2016, 55, 155.  doi: 10.1002/anie.201507031

    8. [8]

      Zhang, Y.; Wu, C. F.; Tian, W. J. RSC Adv. 2015, 5, 36837.  doi: 10.1039/C5RA04669F

    9. [9]

      Gao, G. B.; Gong, D. J.; Zhang, M. X. Acta Chim. Sinica 2016, 74, 363. 

    10. [10]

      Zrazhevskiy, P.; Sena, M.; Gao, X. Chem. Soc. Rev. 2010, 39, 4326.  doi: 10.1039/b915139g

    11. [11]

      Gao, J.; Chen, K.; Luong, R. Nano Lett. 2011, 12, 281.

    12. [12]

      Michalet, X.; Pinaud, F.; Bentolila, L. Science 2005, 307, 538.  doi: 10.1126/science.1104274

    13. [13]

      Cui, X. T.; Lv, Y. Y.; Liu, Y. Acta Chim. Sinica 2014, 72, 75. 

    14. [14]

      Santra, S.; Zhang, P.; Wang, K. Anal. Chem. 2001, 73, 4988.  doi: 10.1021/ac010406+

    15. [15]

      Wu, X.; Chang, S.; Sun, X. Chem. Sci. 2013, 4, 1221.  doi: 10.1039/c2sc22035k

    16. [16]

      Shi, C.; Guo, Z.; Yan, Y. ACS Appl. Mater. Interfaces 2012, 5, 192.

    17. [17]

      Gao, X.; Yang, L.; Petros, J. A. Curr. Opin. Chem. Biol. 2005, 16, 63.

    18. [18]

      Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S. Nat. Methods 2008, 5, 763.  doi: 10.1038/nmeth.1248

    19. [19]

      Smith, A.; Duan, H.; Mohs, A. Adv. Drug Deliver. Rev. 2008, 60, 1226.  doi: 10.1016/j.addr.2008.03.015

    20. [20]

      Jamieson, T.; Bakhshi, R.; Petrova, D. Biomaterials 2007, 28, 4717.  doi: 10.1016/j.biomaterials.2007.07.014

    21. [21]

      Wang, L.; Tan, W. Nano Lett. 2006, 6, 84.  doi: 10.1021/nl052105b

    22. [22]

      Schadlich, A.; Caysa, H.; Mueller, T. ACS Nano 2011, 5, 8710.  doi: 10.1021/nn2026353

    23. [23]

      Lee, C. H. Cheng, S. H.; Wang, Y. J. Adv. Funct. Mater. 2009, 19, 215.  doi: 10.1002/adfm.v19:2

    24. [24]

      Altınoğlu, E.; Adair, J. H WIRES Nanomed. Nanobi. 2010, 2, 461.  doi: 10.1002/wnan.77

    25. [25]

      Yan, L. L.; Xu, B.; Tian, W. J. Nanoscale 2016, 8, 2471.  doi: 10.1039/C5NR05051K

    26. [26]

      Thomas, S.; Joly, G.; Swager, T. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    27. [27]

      Brasseur, N.; Nguyen, T.; Langlois, R. J. Med. Chem. 1994, 37, 415.  doi: 10.1021/jm00029a014

    28. [28]

      Mei, J.; Leung, N.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    29. [29]

      Luo, J.; Xie, Z.; Lam, J. W. Chem. Commun. 2001, 18, 1740.

    30. [30]

      Hong, Y.; Lam, J. W.; Tang, B. Z. Chem. Commun. 2009, 29, 4332.

    31. [31]

      Wang, M.; Zhang, D.; Zhang, G. Chem. Commun. 2008, 37, 4469.

    32. [32]

      Hong, Y.; Lam, J.; Tang, B. Z. Chem. Soc. Rev. 2011, 40. 5361.  doi: 10.1039/c1cs15113d

    33. [33]

      Wang, M.; Zhang, G.; Zhang, D. J. Mater. Chem. 2010, 20, 1858.  doi: 10.1039/b921610c

    34. [34]

      Chen J. L.; Xu, B.; Tian, W. J. ACS Photonics 2015, 2, 313.  doi: 10.1021/ph5004384

    35. [35]

      Zhang, Y.; Xu, B.; Tian, W. J. Polym. Chem. 2014, 5, 3824.  doi: 10.1039/c4py00075g

    36. [36]

      Qi, Q. K.; Xu, B.; Tian, W. J. Adv. Funct. Mater. 2015, 25, 4005.  doi: 10.1002/adfm.v25.26

    37. [37]

      Zhang, J. B.; Xu, B.; Tian, W. J. Adv. Mater. 2014, 26, 739.  doi: 10.1002/adma.201303639

    38. [38]

      Zhang, J. B.; Xu, B.; Tian, W. J. Chem. Commun. 2013, 49, 3878.  doi: 10.1039/c3cc41171k

    39. [39]

      Zhao, Z.; Geng, J.; Chang, Z. J. Mater. Chem. 2012, 22, 11018.  doi: 10.1039/c2jm31482g

    40. [40]

      Qin, W.; Ding, D.; Liu, J. Adv. Funct. Mater. 2012, 22, 771.  doi: 10.1002/adfm.201102191

    41. [41]

      Geng, J.; Li, K.; Ding, D. Small 2012, 8, 3655.  doi: 10.1002/smll.v8.23

    42. [42]

      Geng, J.; Li, K.; Qin, W. Small 2013, 9, 2012.  doi: 10.1002/smll.v9.11

    43. [43]

      Shi, H.; Liu, J.; Geng, J. J. Am. Chem. Soc. 2012, 134, 9569.  doi: 10.1021/ja302369e

    44. [44]

      Wang, M.; Gu, X.; Zhang, G. Anal. Chem. 2009, 81, 4444.  doi: 10.1021/ac9002722

    45. [45]

      Liu, L.; Zhang, G.; Xiang, J. Org. Lett. 2008, 10, 4581.  doi: 10.1021/ol801855s

    46. [46]

      Li, X.; Xu, B.; Tian, W. J. Anal. Chem. 2014, 86, 298.  doi: 10.1021/ac403629t

    47. [47]

      Ma, K.; Xu, B.; Tian, W. J. Anal. Bioanal. Chem. 2015, 407, 2625.  doi: 10.1007/s00216-015-8467-y

    48. [48]

      Qian, J.; Zhu, Z. F.; Qin, A. J. Adv. Mater. 2015, 27, 2332.  doi: 10.1002/adma.v27.14

    49. [49]

      Wang, Y. L.; Hu, R. R.; Xu, W. Biomed. Opt. Express. 2015, 6, 3783.  doi: 10.1364/BOE.6.003783

    50. [50]

      Jin, Y.; Ye, F.; Zeigler, M. ACS Nano 2011, 5, 1468.  doi: 10.1021/nn103304m

    51. [51]

      Chung, C. Y.-S.; Yam, V. W.-W. Chem. Sci. 2013, 4, 377.  doi: 10.1039/C2SC20897K

    52. [52]

      Xu, Y.; Zhang, H.; Li, F. J. Mater. Chem. 2012, 22, 1592.  doi: 10.1039/C1JM14815J

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    7. [7]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    14. [14]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    15. [15]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    16. [16]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

Metrics
  • PDF Downloads(0)
  • Abstract views(2319)
  • HTML views(626)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return