Citation: Zhang Siwei, Zhang Jun, Wu Sida, Lv Wei, Kang Feiyu, Yang Quan-Hong. Research Advances of Carbon-based Anode Materials for Sodium-Ion Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 163-172. doi: 10.6023/A16080428 shu

Research Advances of Carbon-based Anode Materials for Sodium-Ion Batteries

  • Corresponding author: Lv Wei, lv.wei@sz.tsinghua.edu.cn Yang Quan-Hong, qhyangcn@tju.edu.cn
  • Received Date: 24 August 2016

    Fund Project: the National Natural Science Foundation of China No. U1401243Project supported by the National Basic Research Program of China No. 2014CB932400the National Science Fund for Distinguished Young Scholars No. 51525204Shenzhen Basic Research Program  Nos. JCYJ20150529164918734, JCYJ20150331151358140 and JCYJ20150331151358136

Figures(13)

  • Compared with the widely-used lithium-ion battery (LIB), sodium-ion battery (SIB) is a promising energy storage device for large scale energy storage systems due to the low cost and environmental benignity of sodium. However, its practical use is restricted by the lack of suitable anode and cathode materials, especially the applicable anode materials with high performance. SIBs have similar working mechanism to LIBs, and thus, carbon materials are the most promising anode materials for SIBs. But the storage behaviors of Na+ and Li+ in carbon-based anodes are quite different. Graphite, which is used as the anode of commercial LIBs, hardly accommodates sodium ions. Thus, many researchers investigated sodium ion storage in disordered carbons, especially the hard carbons. Hard carbon is composed of disordered turbostratic nanodomains (TNs) and the pores formed between these domains. The edge/defect sites on the carbon surface, e.g., carbenes, vacancies, and dangling bonds on the edges of TNs, the interlayer space in TNs, and the pores can host the sodium ions. High porosity is normally needed to reach a high capacity and rate capability. But this leads to large irreversible reactions, and thus, a low initial Coulombic efficiency and poor cyclic stability. In this paper, sodium ion storage behaviors in different carbon structures are discussed and the design principles and research advances of carbon-based anode materials are reviewed. Particularly, the commercial carbon molecular sieve (CMS) is highlighted as a promising anode material for the practical use of SIBs. Finally, the future development of carbon anodes for SIB is commented and prospected.
  • 加载中
    1. [1]

      Tarascon, J.-M.; Armand, M. Nature 2001, 414(6861), 359.

    2. [2]

      Wu, X.; Jiang, L.; Cao, F.; Guo, Y.; Wan, L. Adv. Mater. 2009, 21(2710), 25.

    3. [3]

      Jung, H.; Jang, M.-W.; Hassoun, J.; Sun, Y.; Scrosati, B. Nat. Commun. 2011, 2(516), 638.

    4. [4]

      Goodenough, J.-B. Energy Storage Mater. 2015, 1, 158. 

    5. [5]

      Wang, Y.; Chen, R.; Chen, T.; Lv, H.; Zhu, G.; Ma, L.; Wang, C.; Jin, Z.; Liu, J. Energy Storage Mater. 2016, 4, 103.

    6. [6]

      Kubota, K.; Komaba, S. J. Electrochem. Soc. 2015, 14(162), A2538.

    7. [7]

    8. [8]

    9. [9]

      Pan, H.; Hu, Y.; Chen, L. Energy Environ. Sci. 2013, 6(8), 2338.

    10. [10]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114(23), 11636.

    11. [11]

      Luo, W.; Shen, F.; Bommier, C.; Zhu, H.; Ji, X.; Hu, L. Acc. Chem. Res. 2016, 49(2), 231. 

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

      Dahn, J.-R.; Zheng, T.; Liu, Y.-H.; Xue, J.-S. Science 1995, 270(5236), 590.

    19. [19]

      Zheng, T.; Liu, Y.; Fuller, E. W.; Tseng, S.; Von Sacken, U.; Dahn, J.-R. J. Electrochem. Soc. 1995, 142(8), 2581.

    20. [20]

      Liu, Y.-H.; Xue, J.-S.; Zheng, T.; Dahn, J.-R. Carbon 1996, 34(2), 193.

    21. [21]

      Buiel, E.; Dahn, J.-R. Electrochim. Acta 1999, 45, 121. 

    22. [22]

      Hashimoto, T.; Yamashita, M.; Kanekiyo, K.; Shiroki, H. Electrochem. Soc. Meet. 1999, 99(2), Abstract no. 157.

    23. [23]

      Stevens, D.-A.; Dahn, J.-R. J. Electrochem. Soc. 2000, 147(4), 1271.

    24. [24]

      Stevens, D.-A.; Dahn, J.-R. J. Electrochem. Soc. 2001, 148(8), A803.

    25. [25]

      Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172.

    26. [26]

      Cao, Y.; Xiao, L.; Sushko, M.-L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.-V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12(7), 3783.

    27. [27]

      David, L.; Singh, G. J. Phys. Chem. C 2014, 118(49), 28401. 

    28. [28]

      Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Nat. Commun. 2014, 5, 403.

    29. [29]

      Wang, Y.; Chou, S.; Liu, H.; Dou, S. Carbon 2013, 57, 202.

    30. [30]

      Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, X.; Lotfabad, E.-M.; Olsen, B.-C.; Mitlin, D. ACS Nano 2013, 7(12), 11004.

    31. [31]

      Luo, W.; Jian, Z.; Xing, Z.; Wang, W.; Bommier, C.; Lerner, M.-M.; Ji, X. ACS Central Science 2015, 1(9), 516.

    32. [32]

      Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21(20), 3859. 

    33. [33]

      Thomas, P.; Billaud, D. Electrochim. Acta 2002, 47(20), 3303.

    34. [34]

      Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. J. Mater. Chem. A 2013, 1(36), 10662. 

    35. [35]

      Stevens, D.-A.; Dahn, J.-R. J. Electrochem. Soc. 2000, 147(12), 4428.

    36. [36]

      Fu, L.; Tang, K.; Song, K.; van Aken, P.-A.; Yu, Y.; Maier, J. Nanoscale 2014, 6(3), 1384.

    37. [37]

      Li, W.; Zeng, L.; Yang, Z.; Gu, L.; Wang, J.; Liu, X.; Cheng, J.; Yu, Y. Nanoscale 2014, 6(6), 693.

    38. [38]

      Matsuo, Y.; Ueda, K. J. Power Sources 2014, 263, 158. 

    39. [39]

      Zhang, G.; Xiong, T.; He, L.; Yan, M.; Zhao, K.; Xu, X.; Mai, L. J. Mater. Sci. 2017, 52(7), 3697. 

    40. [40]

      Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. ACS Nano 2014, 8(7), 7115. 

    41. [41]

      Ding, J.; Wang, H.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X.; Kohandehghan, A.; Mitlin, D. Energy Environ. Sci. 2015, 8(3), 941.

    42. [42]

      Bommier, C.; Surta, T.-W.; Dolgos, M.; Ji, X. Nano Lett. 2015, 15(9), 5888.

    43. [43]

      Huang, J.; Sumpter, B.-G.; Meunier, V. Chem-Eur J. 2008, 14(22), 6614.

    44. [44]

      Bommier, C.; Luo, W.; Gao, W.; Greaney, A.; Ma, S.; Ji, X. Carbon 2014, 76, 165.

    45. [45]

      Zhang, B.; Ghimbeu, C.-M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J. Adv. Energy Mater. 2016, 6(1), 1501588. 

    46. [46]

      Zhang, S.; Lv, W.; Luo, C.; You, C.; Zhang, J.; Pan, Z.; Kang, F.; Yang, Q. Energy Storage Mater. 2016, 3, 18.

    47. [47]

      Jache, B.; Adelhelm, P. Angew. Chem. Int. Ed. 2014, 53(38), 10169. 

    48. [48]

      Kim, H.; Hong, J.; Park, Y.; Kim, J.; Hwang, I.; Kang, K. Adv. Funct. Mater. 2015, 25(4), 534. 

    49. [49]

      Cohn, A.-P.; Share, K.; Carter, R.; Oakes, L.; Pint, C.-L. Nano Lett. 2016, 16(1), 543.

    50. [50]

      Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K. Y.; Park, M. S.; Yoon, W.-S.; Kang, K. Energy Environ. Sci. 2015, 8(10), 2963.

    51. [51]

      Xu, K. Chem. Rev. 2004, 104(10), 4304.

    52. [52]

      Tobishima, S.; Morimoto, H.; Aoki, M.; Saito, Y.; Inose, T.; Fukumoto, T.; Kuryu, T. Electrochim. Acta 2004, 49(6), 979.

    53. [53]

      Hasegawa, G.; Kanamori, K.; Kannari, N.; Ozaki, J.; Nakanishi, K.; Abe, T. Chem. Electrochem. 2015, 2(12), 1917.

    54. [54]

      Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Energy Environ Sci. 2011, 4(9), 3342.

    55. [55]

      Li, Y.; Hu, Y.; Li, H.; Chen, L.; Huang, X. J. Mater. Chem. A. 2016, 4(1), 96. 

    56. [56]

      Li, Y.; Hu, Y.; Qi, X.; Rong, X.; Li, H.; Huang, X.; Chen, L. Energy Storage Mater. 2016, 5, 191.

    57. [57]

      Luo, W.; Bommier, C.; Jian, Z.; Li, X.; Carter, R.; Vail, S.; Lu, Y.; Lee, J.; Ji, X. ACS Appl. Mater. Inter. 2015, 7(4), 2626. 

    58. [58]

      Shen, F.; Zhu, H.; Luo, W.; Wan, J.; Zhou, L.; Dai, J.; Hu, L. ACS Appl. Mater. Inter. 2015, 7(41), 23291. 

    59. [59]

      Li, Y.; Hu, Y.; Titirici, M.; Chen, L.; Huang, X. Adv. Energy Mater. 2016, 6(18), 1600659. 

    60. [60]

      Thomas, P.; Ghanbaja, J.; Billaud, D. Electrochim Acta 1999, 45(3), 423.

    61. [61]

      Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.-F.; Mayes, R.-T.; Dai, S. Adv. Mater. 2011, 23(42), 4828.

    62. [62]

      Stein, A.; Wang, Z.; Fierke, M.-A. Adv. Mater. 2009, 21(3), 265.

    63. [63]

      Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130(16), 265.

    64. [64]

      Rolison, D.-R.; Long, J.-W.; Lytle, J.-C.; Fischer, A.-E.; Rhodes, C.-P.; Mcevoy, T.-M.; Bourga, M.-E.; Lubers, A.-M. Chem. Soc. Rev. 2009, 38(1), 226.

    65. [65]

      Lee, J.; Kim, J.; Hyeon, T. Adv. Mater. 2006, 18(16), 2073.

    66. [66]

      Yang, H.-F.; Zhao, D.-Y. J. Mater. Chem. 2005, 15(12), 1217.

    67. [67]

      Tao, W.; Liu, X.-Y.; Zhao, D.-Y.; Z.; Jiang, Z.-Y. Chem. Phys. Lett. 2004, 389(4-6), 327.

    68. [68]

      Xin, S.; Guo, Y.; Wan, L. Acc. Chem. Res. 2012, 45(10), 1759. 

    69. [69]

      Yao, L. H.; Cao, M. S.; Yang, H. J.; Liu, X. J.; Fang, X. Y.; Yuan, J. Comp. Mater. Sci. 2014, 85, 179.

    70. [70]

      Zhang, J.; Lv, W.; Tao, Y.; He, Y.; Wang, D.; You, C.; Li, B.; Kang, F.; Yang, Q.-H Energy Storage Mater. 2015, 1, 112.

    71. [71]

      Li, H.; Shen, F.; Luo, W.; Dai, J.; Han, X.; Chen, Y.; Yao, Y.; Zhu, H.; Fu, K.; Hitz, E.; Hu, L. ACS Appl. Mater. Inter. 2016, 8(3), 2204. 

    72. [72]

      Jin, J.; Yu, B.; Shi, Z.; Wang, C.; Chong, C. J. Power Sources 2014, 272, 800. 

    73. [73]

      Wu, L.; Buchholz, D.; Vaalma, C.; Giffin, G.-A.; Passerini, S. ChemElectroChem 2016, 3(2), 292.

    74. [74]

      Shen, F.; Luo, W.; Dai, J.; Yao, Y.; Zhu, M.; Hitz, E.; Tang, Y.; Chen, Y.; Sprenkle, V.-L.; Li, X.; Hu, L. Adv. Energy Mater. 2016, 6(14), 1600377. 

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(209)
  • Abstract views(5642)
  • HTML views(2199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return