Citation: Guan Weijiang, Zhou Wenjuan, Lü Chao. Ultrathin Luminescence Film Based on Gold Nanoclusters with Aggregation-Induced Emission[J]. Acta Chimica Sinica, ;2016, 74(11): 929-934. doi: 10.6023/A16080427 shu

Ultrathin Luminescence Film Based on Gold Nanoclusters with Aggregation-Induced Emission

  • Corresponding author: Lü Chao, luchao@mail.buct.edu.cn
  • Received Date: 24 August 2016

    Fund Project: National Basic Research Program of China No. 2014CB932103National Basic Research Program of China 973 Programand the National Natural Science Foundation of China 21575010and the National Natural Science Foundation of China 21375006

Figures(7)

  • Solution-based fluorescent probes usually need to be fabricated into fluorescent films for device application. The fabricated fluorescent films can have not only the original advantages of probes (e.g., high sensitivity and selectivity) but also several unique properties, such as tunable shape and size, recycling, non-invasion, good stability and portability, and real-time detection. However, the sensitivity of fluorescent films is often reduced by the aggregation-caused quenching (ACQ) effect during the film formation:fluorophores with high concentration inherently tend to aggregate through intermolecular π-π in-teractions. Moreover, the sensing performances of the fluorescent film are significantly influenced by the diffusion rate of analytes:the thicker the films, the slower the response time towards target molecules. Therefore, aggregation-induced emission (AIE) materials are urgently needed to be developed to overcome these shortcomings. On the other hand, excellent photostability could be better for the practical applications in the integrated sensor devices. However, most of the present AIEgens are π-conjugated organic molecules with poor ability against photobleaching. Interestingly, several fluorescent gold nanoclusters (AuNCs) with higher photostability were discovered to have AIE property. In this work, two kinds of negatively-charged fluorescent AuNCs were selected:bovine serum albumin capped AuNCs (BSA-AuNCs) and AIE-active glutathione capped AuNCs (GSH-AuNCs). Quartz glass slides were alternately dipped into a poly (allylamine) (PAH) solution and AuNCs solutions to fabricate GSH-AuNCs/PAH (yellow-emitting) and BSA-AuNCs/PAH (red-emitting) fluorescent ultrathin films, respectively. As expected, the photoluminescence quantum yield of GSH-AuNCs is two-fold higher in GSH-AuNCs/PAH ultrathin films than in solution. The fluorescence of (GSH-AuNCs/PAH)5 ultrathin film could be quenched effectively by 2, 4, 6-trinitrotoluene (TNT) in 10 min, while the fluorescence intensity of (BSA-AuNCs/PAH)25 ultrathin film remain almost unchanged. Based on this phenomenon, a novel ratio fluorescence sensing system was constructed by using (BSA-AuNCs/PAH)25 ultrathin film as control and (GSH-AuNCs/PAH)5 ultrathin film as the detection unit. The fluorescence intensity ratios (I565/I620) have a linear relationship with the log concentrations of TNT in the range of 10-6~10-9 mol/L with detection limit of 1.0×10-10 mol/L.
  • 加载中
    1. [1]

      Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993.  doi: 10.1039/b609548h

    2. [2]

      Li, X. H.; Gao, X. H.; Shi, W.; Ma, H. M. Chem. Rev. 2014, 114, 590.  doi: 10.1021/cr300508p

    3. [3]

      Thomas Ⅲ, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    4. [4]

      Ding, L.; Fang, Y. Chem. Soc. Rev. 2010, 39, 4258.  doi: 10.1039/c003028g

    5. [5]

      Stich, M. I. J.; Fischer, L. H.; Wolfbeis, O. S. Chem. Soc. Rev. 2010, 39, 3102.  doi: 10.1039/b909635n

    6. [6]

      Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Chem. Soc. Rev. 2015, 44, 6981.  doi: 10.1039/C5CS00246J

    7. [7]

      Zhao, Z. J.; Lu, P.; Lam, J. W. Y.; Wang, Z. M.; Chan, C. Y. K.; Sung, H. H. Y.; Williams, I. D.; Ma, Y. G.; Tang, B. Z. Chem. Sci. 2011, 2, 672.  doi: 10.1039/C0SC00521E

    8. [8]

      McQuade, D. T.; Pullen, E. A.; Swager, T. M. Chem. Rev. 2000, 100, 2537.  doi: 10.1021/cr9801014

    9. [9]

      Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Chem. Rev. 2012, 112, 4687.  doi: 10.1021/cr200263w

    10. [10]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.

    11. [11]

      Guan, W. J.; Zhou, W. J.; Lu, C.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 15160.  doi: 10.1002/anie.201507236

    12. [12]

      Li, Y. D.; Zhang, H.; Wang, X. C.; Wang, F.; Xia, Y. J. Acta Chim. Sinica 2015, 73, 1055.
       

    13. [13]

      Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351.  doi: 10.6023/A16010001
       

    14. [14]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    15. [15]

      Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Nat. Commun. 2016, 7, 11811.  doi: 10.1038/ncomms11811

    16. [16]

      Chu, Y. H.; Han, H.; Li, W.; Liu, Z. T.; Han, X. E. Chin. J. Org. Chem. 2016, 36, 336.  doi: 10.6023/cjoc201508023

    17. [17]

      Niu, Y. F.; Qian, Y.; Hu, X. D. Chin. J. Org. Chem. 2016, 36, 555.  doi: 10.6023/cjoc201509045

    18. [18]

      Ghosh, K. R.; Saha, S. K.; Gao, J. P.; Wang, Z. Y. Chem. Commun. 2014, 50, 716.  doi: 10.1039/C3CC47934J

    19. [19]

      Zhang, Y. Q.; Li, X. D.; Gao, L. J.; Qiu, J. H.; Heng, L. P.; Tang, B. Z.; Jiang, L. ChemPhysChem 2014, 15, 507.  doi: 10.1002/cphc.v15.3

    20. [20]

      Zhao, N.; Lam, J. W. Y.; Sung, H. H. Y.; Su, H. M.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 133.  doi: 10.1002/chem.201303251

    21. [21]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165.  doi: 10.6023/A15090628
       

    22. [22]

      Li, Y.; Wang, X.; Sun, J. Q. Chem. Soc. Rev. 2012, 41, 5998.  doi: 10.1039/c2cs35107b

    23. [23]

      Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. J. Am. Chem. Soc. 2012, 134, 16662.  doi: 10.1021/ja306199p

    24. [24]

      Yang, W. T.; Guo, W. S.; Zhang, B. B.; Chang, J. Acta Chim. Sinica 2014, 72, 1209.  doi: 10.6023/A14080568
       

    25. [25]

      Tian, R.; Zhang, S. T.; Li, M. W.; Zhou, Y. Q.; Lu, B.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2015, 25, 5006.  doi: 10.1002/adfm.v25.31

    26. [26]

      Xie, J. P.; Zheng, Y. G.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888.  doi: 10.1021/ja806804u

    27. [27]

      Guan, W. J.; Lu, J.; Zhou, W. J.; Lu, C. Chem. Commun. 2014, 50, 11895.  doi: 10.1039/C4CC06080F

    28. [28]

      Sun, X. C.; Wang, Y.; Lei, Y. Chem. Soc. Rev. 2015, 44, 8019,  doi: 10.1039/C5CS00496A

    29. [29]

      Wang, K.; Liu, Z. L.; Jiang, K. Acta Chim. Sinica 2014, 72, 590.  doi: 10.6023/A14030192
       

    30. [30]

      Makinen, M.; Nousiainen, M.; Sillanpaa, M. Mass Spectrom. Rev. 2011, 30, 940.

    31. [31]

      Capka, L.; Vecera, Z.; Mikuska, P.; Sestak, J.; Kahle, V. J. Chromatogr. A 2015, 1388, 167.  doi: 10.1016/j.chroma.2015.02.041

    32. [32]

      Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. J. Am. Chem. Soc. 2009, 131, 13806.  doi: 10.1021/ja905134d

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    4. [4]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    11. [11]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(0)
  • Abstract views(2604)
  • HTML views(735)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return