Citation: Liu Lilu, Qi Xingguo, Hu Yongsheng, Chen Liquan, Huang Xuejie. Novel Cu Based Oxides with Tunnel Structure as Cathode for Sodium-ion Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 218-224. doi: 10.6023/A16080424 shu

Novel Cu Based Oxides with Tunnel Structure as Cathode for Sodium-ion Batteries

  • Corresponding author: Hu Yongsheng, yshu@ihpy.ac.cn
  • Received Date: 21 August 2016
    Revised Date: 10 November 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 51222210 and 11234013

Figures(8)

  • Lithium-ion batteries have dominated the electronic and portable device market, since its commercialization in 1990s. However, the cost gets boosted because of the shortage and uneven distribution of lithium. Due to the advantage of cost compared with lithium-ion batteries, sodium-ion batteries are considered as the potential candidates for large scale energy storage systems. Cu based tunnel type materials were first synthesized through simple solid state reaction, with Na2CO3, CuO, Fe2O3, MnO2 and TiO2 as starting materials. These raw materials were weighed and grounded in an agate mortar, followed by heat treatment at 950℃ for 24 h in air. The obtained samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance test. The XRD results demonstrate the tunnel structure was formed with space group pbam (the same with Na0.44MnO2) for each compound. SEM observation manifests that the distribution of particle size is from several hundred of nanometers to several micrometers. The specifically designed compound with Mn substitution (Na0.66Cu0.17Mn0.33Ti0.50O2) can deliver 90 mAh/g cycled between 1.5~4.1 V. Good cycling stability was verified for this compound, of which 90% of its capacity maintained after 50 cycles at 0.1C rate. Moreover, the rate capability is also good and 74% of its capacity remained when cycled at 1C rate. Charge transfer mechanism was studied by X-ray photoelectron spectroscopy (XPS), and the electroactivity of Cu3+/Cu2+ in this tunnel structure was proved. In addition, we also performed in-situ XRD in order to examine the structure change during sodium extraction and intercalation. Only solid solution reaction took place during the test with shift of peaks or change of the peaks' intensity, however without the appearance of new peaks or disappearance of existed peaks. Here we report, for the first time, the electroactivity of Cu3+/Cu2+ in tunnel type structure. Our results provide new insights in designing tunnel type compound as cathode material for sodium-ion batteries.
  • 加载中
    1. [1]

    2. [2]

      Hua, W.; Wang, Y.; Zhong, Y.; Wang, G.; Zhong, B.; Fang, B.; Guo, X.; Liao, S.; Wang, H. Chin. J. Chem. 2015, 33, 261.

    3. [3]

      Ou, J.; Yang, L.; Zhang, Y.; Chen, L.; Guo, Y.; Xiao, D. Chin. J. Chem. 2015, 33, 1293.

    4. [4]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    5. [5]

    6. [6]

      Pan, H. L.; Hu, Y. S.; Chen, L. Q. Energy Environ. Sci. 2013, 6, 2338. 

    7. [7]

    8. [8]

      Xiang, X.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343.

    9. [9]

      Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2014, 8, 195.

    10. [10]

      Hamani, D.; Ati, M.; Tarascon, J.-M.; Rozier, P. Electrochem. Commun. 2011, 13, 938.

    11. [11]

      Kubota, K.; Ikeuchi, I.; Nakayama, T.; Takei, C.; Yabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. J. Phys. Chem. C 2015, 119,166. 

    12. [12]

      Li, Y.; Feng, X.; Cui, S.; Shi, Q.; Mi, L.; Chen, W. CrystEngComm 2016, 18, 3136.

    13. [13]

      Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J.-J.; Johnson, C. S. Chem. Mater. 2015, 27, 6755. 

    14. [14]

      Reddy, B. V. R.; Ravikumar, R.; Nithya, C.; Gopukumar, S. J. Mater. Chem. A 2015, 3, 18059. 

    15. [15]

      Han, M.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. J. Power Sources 2014, 258, 266. 

    16. [16]

      Liu, Y.; Fang, X.; Zhang, A.; Shen, C.; Liu, Q.; Enaya, H. A.; Zhou, C. Nano Energy 2016, 27, 27. 

    17. [17]

      Zhu, Y.-E.; Qi, X. G.; Chen, X.; Zhou, X.; Zhang, X.; Wei, J.; Hu, Y.; Zhou, Z. J. Mater. Chem. A 2016, 4, 11103. 

    18. [18]

      Qi, X.; Wang, Y.; Jiang, L.; Mu, L.; Zhao, C.; Liu, L.; Hu, Y.-S.; Chen, L.; Huang, X. Part. Part. Syst. Charact. 2016, 33, 538. 

    19. [19]

      Guo, H.; Wang, Y.; Han, W.; Yu, Z.; Qi, X.; Sun, K.; Hu, Y.-S.; Liu, Y.; Chen, D.; Chen, L. Electrochim. Acta 2015, 158, 258.

    20. [20]

      Delmas, C.; Fouassier, C.; Hagenmuller, P. Physica B & C 1980, 99, 81.

    21. [21]

      Doeff, M. M.; Richardson, T. J.; Hollingsworth, J.; Yuan, C. W.; Gonzales, M. J. Power Sources 2002, 112, 294. 

    22. [22]

      Doeff, M. M.; Peng, M. Y.; Ma, Y.; De Jonghe, L. C. J. Electrochem. Soc. 1994, 141, L145.

    23. [23]

      Parant, J.-P.; Olazcuag, R.; Devalett, M.; Fouassie, C.; Hagenmuller, P. J. Solid State Chem. 1971, 3, 1. 

    24. [24]

      Whitacre, J. F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12, 463.

    25. [25]

      Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y. S.; Yang, W.; Kang, K.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6, 6401.

    26. [26]

      Wang, Y.; Mu, L.; Liu, J.; Yang, Z.; Yu, X.; Gu, L.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Adv. Energy Mater. 2015, 5, 1501005. 

    27. [27]

      Xu, S.; Wang, Y.; Ben, L.; Lyu, Y.; Song, N.; Yang, Z.; Li, Y.; Mu, L.; Yang, H.-T.; Gu, L.; Hu, Y.-S.; Li, H.; Cheng, Z.-H.; Chen, L. Huang, X. Adv. Energy Mater. 2015, 5, 1501156. 

    28. [28]

      Wang, J.; Qiu, B.; He, X.; Risthaus, T.; Liu, H.; Stan, M. C.; Schulze, S.; Xia, Y.; Liu, Z.; Winter, M.; Li, J. Chem. Mater. 2015, 27, 4374.

    29. [29]

      Zhan, P.; Wang, S.; Yuan, Y.; Jiao, K.; Jiao, S. J. Electrochem. Soc. 2015, 162, A1028.

    30. [30]

      Jiang, X.; Liu, S.; Xu, H.; Chen, L.; Yang, J.; Qian, Y. Chem. Commun. 2015, 51, 8480.

    31. [31]

      Chu, Q.; Wang, X.; Li, Q.; Liu, X. Acta Crystallogr. Sect. C 2011, 67, i10.

    32. [32]

      Kim, H.; Kim, D. J.; Seo, D.-H.; Yeom, M. S.; Kang, K.; Kim, D. K. Jung, Y. Chem. Mater. 2012, 24, 1205.

    33. [33]

      Xu, S. Y.; Wu, X. Y.; Li, Y. M.; Hu, Y. S.; Chen, L. Q. Chin. Phys. B 2014, 23, 118202. 

    34. [34]

      Mu, L.; Xu, S.; Li, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. Adv. Mater. 2015, 27, 6928.

    35. [35]

      Mu, L.; Hu, Y.-S.; Chen, L. Chin. Phys. B 2015, 24, 038202.

    36. [36]

      Li, Y.; Yang, Z.; Xu, S.; Mu, L.; Gu, L.; Hu, Y.-S.; Li, H.; Chen, L. Adv. Sci. 2015, 2, 1500031.

    37. [37]

      Li, Y.; Hu, Y.-S.; Qi, X.; Rong, X.; Li, H.; Huang, X.; Chen, L. Energy Storage Mater. 2016, 5, 191.

    38. [38]

      Sharma, N.; Gonzalo, E.; Pramudita, J. C.; Han, M. H.; Brand, H.; Hart, J. N.; Peng, W. K.; Guo, Z. P.; Rojo, T. Adv. Funct. Mater. 2005, 25, 4994.

  • 加载中
    1. [1]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    14. [14]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

Metrics
  • PDF Downloads(16)
  • Abstract views(1442)
  • HTML views(291)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return