Citation: Bin Xin, Luo Weijian, Yuan Wangzhang, Zhang Yongming. Clustering-Triggered Emission of Poly (N-hydroxysuccinimide Methacrylate)[J]. Acta Chimica Sinica, ;2016, 74(11): 935-941. doi: 10.6023/A16080423 shu

Clustering-Triggered Emission of Poly (N-hydroxysuccinimide Methacrylate)

  • Corresponding author: Yuan Wangzhang, wzhyuan@sjtu.edu.cn Zhang Yongming, ymzsjtu@gmail.com
  • Received Date: 20 August 2016

    Fund Project: National Natural Science Foundation of China 51473092and the Shanghai Rising-Star Program 15QA1402500

Figures(6)

  • Nonconventional luminogens without classic aromatic or conjugated structures are attracting increasing interests owing to their fundamental importance and promising applications in diverse areas. Many of them even exhibit unique aggregation-induced emission (AIE) characteristics. The emission mechanism, however, remains under debate. Previously, we proposed the clustering-triggered emission (CTE) mechanism, namely the clustering of nonconventional chromophores and subsequent electron overlap to rationalize the emission behaviors of such luminogens. To further our understanding, herein, we designed and synthesized poly (N-hydroxysuccinimide methacrylate) (PNHSMA) without any aromatic structures, which was obtained by the radical polymerization of N-hydroxysuccinimide methacrylate (NHSMA) monomer in toluene at 65℃ utilizing azobisisobutyronitrile (AIBN) as initiator. And NHSMA was prepared through the elimination between N-hydroxysuccinimide (NHS) and methacryloyl chloride in the presence of triethylamine (Et3N). It is found that PNHSMA is virtually nonluminescent in dilute solutions (≤0.4 mg·mL-1) even at 77 K, but gets emissive in concentrated solutions (e.g. 40 mg·mL-1) with photoluminescence (PL) maxima at 434 and 485 nm at room temperature. Moreover, its solid powders emit intense blue light with multiple PL peaks upon UV irradiation, indicating its AIE nature and the formation of varying emission species. Further PL measurement of PNHSMA in dimethylformide (DMF) and DMF/acetone (good solvent/nonsolvent) mixtures duly verifies its AIE feature. Meanwhile, NHSMA monomer shows similar emission behaviors to those of PNHSMA, demonstrating concentration enhanced emission and AIE characteristics. In light of above results, it is assumed that NHSMA and its polymeric counterpart PNHSMA may share the similar emission mechanism. Single crystal structure of NHSMA reveals the conjugation of imide group and 3D intermolecular interactions of C=O…C=O (n-π, 3.072 Å), C=O…H-C (2.651, 2.642 Å) and C=O…C-H (3.099 Å). The emission of PNHSMA and NHSMA in concentrated solutions and solid states is thus ascribed to the clustering of imide and ester groups, which results in electronic interactions. The overlap of π and lone pair (n) electrons among C=O, N and O units, together with effective intermolecular interactions in the solid powders extend the conjugation and rigidify the molecular conformations, thus leading to boosted emissions. Such CTE mechanism might be well extended to other nonconventional systems and should be inspiring for the rational design of novel luminogens.
  • 加载中
    1. [1]

      Qiu, F.; Wang, D.; Zhu, Q.; Zhu, L.; Tong, G.; Lu, Y.; Yan, D.; Zhu, X. Biomacromolecules 2014, 15, 1355. (b) Kang, B.; Afifi, M. M.; Austin, L. A.; El-Sayed, M. A. ACS Nano 2013, 7, 7420.

    2. [2]

      Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943. (b) Wang, Q.; Ding, J.; Ma, D.; Cheng, Y.; Wang, L.; Jing, X.; Wang, F. Adv. Funct. Mater. 2009, 19, 84. (c) Zhang, Q.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Adv. Mater. 2004, 16, 432. (d) Yang, J.; Li, L.; Yu, Y.; Ren, Z.; Peng, Q.; Ye, S.; Li, Q.; Li, Z. Mater. Chem. Front. 2017, 1, DOI:10.1039/C6QM00014B.

    3. [3]

      Bai, L.; Li, W.; Chen, J.; Bo, F.; Gao, B.; Liu, H.; Li, J.; Wu, Y.; Ba, X. Macromol. Rapid Commun. 2013, 34, 539. (b) Wu, Y. X.; Li, J. B.; Liang, L. H.; Lu, D. Q.; Zhang, J.; Mao, G. J.; Zhou, L. Y.; Zhang, X. B.; Tan, W.; Shen, G. L.; Yu, R. Q. Chem. Commun. 2014, 50, 2040. (c) Shi, H.; Sun, H.; Yang, H.; Liu, S.; Jenkins, G.; Feng, W.; Li, F.; Zhao, Q.; Liu, B.; Huang, W. Adv. Funct. Mater. 2013, 23, 3268. (d) Chen, M.; Yin, M. Prog. Polym. Sci. 2014, 39, 365.

    4. [4]

      Song, Z.; Hong, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Liu, B.; Tang, B. Z. J. Mater. Chem. B 2014, 2, 1717. (b) Zhang, W.; Xu, L.; Qin, J.; Yang, C. Macromol. Rapid Commun. 2013, 34, 442. (c) Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. J. Mater. Chem. 2010, 20, 185.

    5. [5]

      Zhao, Y. S.; Xu, J.; Peng, A.; Fu, H.; Ma, Y.; Jiang, L.; Yao, J. Angew. Chem. 2008, 120, 7411. (b) Gu, X.; Yao, J.; Zhang, G.; Yan, Y.; Zhang, C.; Peng, Q.; Liao, Q.; Wu, Y.; Xu, Z.; Zhao, Y.; Fu, H.; Zhang, D. Adv. Funct. Mater. 2012, 22, 4862.

    6. [6]

      Wang, K.; Zhang, H.; Chen, S.; Yang, G.; Zhang, J.; Tian, W.; Su, Z.; Wang, Y. Adv. Mater. 2014, 26, 6168. (b) Liu, D.; Duan, Y.-H. Chin. Chem. Lett. 2013, 24, 809. (c) Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W. Y.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Adv. Mater. 2010, 22, 2159. (d) Yuan, W. Z.; Gong, Y.; Chen, S.; Shen, X. Y.; Lam, J. W. Y.; Lu, P.; Lu, Y.; Wang, Z.; Hu, R.; Xie, N.; Kwok, H. S.; Zhang, Y.; Sun, J. Z.; Tang, B. Z. Chem. Mater. 2012, 24, 1518. (e) Ning, Z.; Chen, Z.; Zhang, Q.; Yan, Y.; Qian, S.; Cao, Y.; Tian, H. Adv. Funct. Mater. 2007, 17, 3799. (f) Wang, C.-R.; Gong, Y.-Y.; Yuan, W.-Z.; Zhang, Y.-M. Chin. Chem. Lett. 2016, 27, 1184.

    7. [7]

      Huang, T.; Wang, Z.; Qin, A.; Sun, J. Z.; Tang, B. Z. Acta Chim. Sinica 2013, 71, 979(in Chinese). (黄田, 汪昭旸, 秦安军, 孙景志, 唐本忠, 化学学报, 2013, 71, 979.) (b) Zhu, S.; Song, Y.; Shao, J.; Zhao, X.; Yang, B. Angew. Chem., Int. Ed. 2015, 54, 14626. (c) Pastor-Pérez, L.; Chen, Y.; Shen, Z.; Lahoz, A.; Stiriba, S.-E. Macromol. Rapid Commun. 2007, 28, 1404.

    8. [8]

      Yu, W.; Wu, Y.; Chen, J.; Duan, X. Y.; Jiang, X.-F.; Qiu, X.; Li, Y. RSC Adv. 2016, 6, 51257. (b) Yu, W.; Wang, Z.; Yang, D.; Ouyang, X.; Qiu, X.; Li, Y. RSC Adv. 2016, 6, 47632.

    9. [9]

      Gong, Y. Y.; Tan, Y. Q.; Mei, J.; Zhang, Y. R.; Yuan, W. Z.; Zhang, Y. M.; Sun, J. Z.; Tang, B. Z. Sci. China Chem. 2013, 56, 1178. (b) Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W. Z.; Zhang, Y. Small 2016, 12, DOI:10.1002/smll.201601545.

    10. [10]

      Zhu, S.; Zhang, J.; Wang, L.; Song, Y.; Zhang, G.; Wang, H.; Yang, B. Chem. Commun. 2012, 48, 10889. (b) Niu, S.; Yan, H.; Chen, Z.; Li, S.; Xu, P.; Zhi, X. Polym. Chem. 2016, 7, 3747. (c) Wang, H.-X.; Yang, Z.; Liu, Z.-G.; Wan, J.-Y.; Xiao, J.; Zhang, H.-L. Chem. Eur. J. 2016, 22, 8096. (d) Liu, S. G.; Li, N.; Ling, Y.; Kang, B. H.; Geng, S.; Li, N. B.; Luo, H. Q. Langmuir 2016, 32, 1881.

    11. [11]

      Crosby, G. A.; Demas, J. N. J. Phys. Chem. 1971, 75, 991. (b) Lee, W. I.; Bae, Y.; Bard, A. J. J. Am. Chem. Soc. 2004, 126, 8358. (c) Cao, L.; Yang, W.; Wang, C.; Fu, S. J. Macromol. Sci. Part A. 2007, 44, 417. (d) Yang, W.; Pan, C.-Y. Macromol. Rapid Commun. 2009, 30, 2096. (e) You, Y. Z.; Yu, Z. Q.; Cui, M. M.; Hong, C. Y. Angew. Chem. Int. Ed. 2010, 49, 1099. (f) Wang, D.; Yu, Z.-Q.; Hong, C.-Y.; You, Y.-Z. Eur. Polym. J. 2013, 49, 4189. (g) Yang, L.; Wang, L.; Cui, C.; Lei, J.; Zhang, J. Chem. Commun. 2016, 52, 6154.

    12. [12]

      Lin, Y.; Gao, J.-W.; Liu, H.-W.; Li, Y.-S. Macromolecules 2009, 42, 3237.  doi: 10.1021/ma802353f

    13. [13]

      Wu, D. C.; Liu, Y.; He, C. B.; Goh, S. H. Macromolecules 2005, 38, 9906. (b) Sun, M.; Hong, C.-Y.; Pan, C.-Y. J. Am. Chem. Soc. 2012, 134, 20581.

    14. [14]

      Restani, R. B.; Morgado, P. I.; Ribeiro, M. P.; Correia, I. J.; Aguiar-Ricardo, A.; Bonifácio, V. D. B. Angew. Chem. Int. Ed. 2012, 51, 5162.  doi: 10.1002/anie.201200362

    15. [15]

      Wang, D.; Imae, T. J. Am. Chem. Soc. 2004, 126, 13204.  doi: 10.1021/ja0454992

    16. [16]

      Lin, S. Y.; Wu, T. H.; Jao, Y. C.; Liu, C. P.; Lo, L. W.; Yang, C. S. Chem. Eur. J. 2011, 17, 7158.  doi: 10.1002/chem.201100620

    17. [17]

      Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Macromolecules 2015, 48, 476.  doi: 10.1021/ma502352x

    18. [18]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718. (b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361. (c) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740. (d) Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. J. Am. Chem. Soc. 2012, 134, 9956. (e) Zhao, Z.; He, B.; Tang, B. Z. Chem. Sci. 2015, 6, 5347.

    19. [19]

      Li, C.; Tang, X.; Zhang, L.; Li, C.; Liu, Z.; Bo, Z.; Dong, Y. Q.; Tian, Y.-H.; Dong, Y.; Tang, B. Z. Adv. Opt. Mater. 2015, 3, 1184. (b) Zhao, Z.; Chen, T.; Jiang, S.; Liu, Z.; Fang, D.; Dong, Y. Q. J. Mater. Chem. C 2016, 4, 4800. (c) Feng, C.; Wang, K.; Xu, Y.; Liu, L.; Zou, B.; Lu, P. Chem. Commun. 2016, 52, 3836. (d) Yue, B.-L.; Xie, Z.-Q.; Lu, P.; Ma, Y.-G. Sci. Sinica Chim. 2013, 43, 1065(in Chinese). (越柏玲, 解增旗, 路萍, 马於光, 中国科学:化学, 2013, 43, 1065.)

    20. [20]

      Xun, Z.-Q.; Tang, H.-Y.; Zeng, Y.; Chen, J.-P.; Yu, T.-J.; Zhang, X.-H.; Li, Y. Acta Chim. Sinica 2015, 73, 819(in Chinese). (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.) (b) Xia, Z.-Q.; Shao, A.-D.; Li, Q.; Zhu, S.-Q.; Zhu, W.-H. Acta Chim. Sinica 2016, 74, 351(in Chinese). (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.) (c) Bian, S.; Ye, J.-H.; Fan, Z.; Zhang, W.-C.; Wang, L.-Y. Chin. J. Org. Chem. 2016, 36, 855(in Chinese). (卞松, 叶家海, 樊政, 张文超, 王乐勇, 有机化学, 2016, 36, 855.)

    21. [21]

      Wang, R. B.; Yuan, W. Z.; Zhu, X. Y. Chin. J. Polym. Sci. 2015, 33, 680.  doi: 10.1007/s10118-015-1635-x

    22. [22]

      Zhao, E.; Lam, J. W. Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Tang, B. Z. Macromolecules 2014, 48, 64.
       

    23. [23]

      Miao, X.; Liu, T.; Zhang, C.; Geng, X.; Meng, Y.; Li, X. Phys. Chem. Chem. Phys. 2016, 18, 4295.  doi: 10.1039/C5CP07134H

    24. [24]

      Niu, S.; Yan, H.; Chen, Z.; Yuan, L.; Liu, T.; Liu, C. Macromol. Rapid Commun. 2016, 37, 136.  doi: 10.1002/marc.v37.2

    25. [25]

      Mao, B.-W.; Jia, M.; Zhang, L.; Cao, S.-K. Polym. Bull. 2014, (12), 157(in Chinese).
       

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    18. [18]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    19. [19]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    20. [20]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

Metrics
  • PDF Downloads(0)
  • Abstract views(2646)
  • HTML views(483)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return