Citation: Wang Xiaoju, Dong Kui, Liu Qiang. Visible-Light-Driven Aromatization Hydrogen Evolution by Organic Dye and Ni Complex[J]. Acta Chimica Sinica, ;2017, 75(1): 119-122. doi: 10.6023/A16080421 shu

Visible-Light-Driven Aromatization Hydrogen Evolution by Organic Dye and Ni Complex

  • Corresponding author: Liu Qiang, liuqiang@lzu.edu.cn
  • Received Date: 18 August 2016

    Fund Project: the Fundamental Research Funds for the Central Universities lzujbky-2015-49National Natural Science Foundation of China 21572090National Natural Science Foundation of China 21172102

  • Pyridine derivatives play an important role in curing and controlling mites, bacteria, weed and so on. Pyrimidine derivatives exist in a number of bioactive natural products, and they have anti-allergy, anti-cancer, anti-inflammatory, insecticidal and some other properties. 3, 4-Disubstituted thiophenes not only are important units for the synthesis of natural products, but also serve as key components in some biologically active compounds and material chemistry. In modern society, we have the urgent demand for achieving our products atom economicly and environment-friendly. Under this background, "atom-economy" reactions have been drawing great attention from many chemists and they have got many exciting improvements since then. So, we want to make our own contributions to this area and the following are some of our preliminary results. Our method was based on synergistic application of eosin Y with nickel (Ⅱ) complex and an external oxidant-free oxidative dehydrogenation aromatization has been developed. At room temperature, Hantzsch 1, 4-dihydropyridines, 1, 4-dihydropyrimidines, 2, 5-dihydrothiophenes and 2, 5-dihydropyrroles were transformed into corresponding aromatic compounds in excellent yield under visible light irradiation via hydrogen evolution. We determined the hydrogen with GC-TCD using pure hydrogen as an external standard. It features very mild reaction conditions, high yields and excellent chemo-selectivity. In the previous reports, these transformations usually required higher temperatures and/or stronger oxidizing reagents, resulting in the generation of a large amount of by-products. In addition, the hydrogen evolution reactions were also compared with those of aerobic dehydrogenation. The results indicated that the dehydrogenation aromatizations of hantzsch 1, 4-dihydropyridines and 1, 4-dihydropyrimidine derivatives under the hydrogen evolution conditions proceeded in higher yields but very low conversions, while the reactions of 2, 5-dihydrothiophenes and 2, 5-dihydropyrroles gave higher conversions in the aerobic dehydrogenation conditions. So far, this is the first report using organic dye material combined with nickel (Ⅱ) complexes to achieve dihydrogen dehydrogenation aromatization of heterocyclic compounds.
  • 加载中
    1. [1]

      (a) Li, Y. M.; Jia, F.; Ma, L. N.; Li, Z. P. Acta Chim.Sinica2015, 73, 1311 (in Chinese). (李远明, 贾凡, 马丽娜, 李志平, 化学学报, 2015, 73, 1311.) (b) Xu, W. S.; Zhao, S. J.; Bi, X. H.; Liao, P. Q. Chin. J. Org. Chem. 2015, 35, 2095 (in Chinese). (徐文帅, 赵寿经, 毕锡和, 廖沛球, 有机化学, 2015, 35, 2095.) (c) Kone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Chem.Sci. 2014, 5, 865. (d) Li, Q. H.; Huang, R.; Wang, C. J. Acta Chim.Sinica 2014, 72, 830 (in Chinese). (李清华, 黄蓉, 王春江, 化学学报, 2014, 72, 830.) (e) Dobereiner, G. E.; Crabtree, R. H. Chem.Rev. 2010, 110, 681.

    2. [2]

      Khadikar, B.; Borkat, S. Synth.Commun. 1998, 28, 207.  doi: 10.1080/00397919808005712

    3. [3]

      Ban, M.; Taquchi, H.; Katsushima, T.; Akoki, S.; Wantanbe, A. Bioorg.Med.Chem. 1998, 6, 1057.  doi: 10.1016/S0968-0896(98)00064-9

    4. [4]

      Wright, G. E.; Gombino, J. J. J.Med.Chem. 1984, 27, 181.  doi: 10.1021/jm00368a013

    5. [5]

      Jalander, L. F.; Longquist, J. E. Heterocycles 1998, 48, 743.  doi: 10.3987/COM-97-7886

    6. [6]

      Srivastva, S. K.; Agarwal, A.; Murthy, P. K.; Chauhan, P. M. S.; Agarwal, S. K.; Bhaduri, A. P.; Singh, S. N.; Fatima, N.; Chatterjee, R. K. J.Med.Chem. 1999, 42, 1667.  doi: 10.1021/jm9800705

    7. [7]

      (a) Kappe, C. O. Tetrahedron 1993, 49, 6937. (b) Kappe, C. O. Acc.Chem.Res. 2000, 33, 879. (c) Bose, D. S.; Fatima, L.; Mereyala, H. B. J.Org.Chem. 2003, 68, 587.

    8. [8]

      (a) Gribble, W. G. In Comprehensive Heterocyclic Chemistry, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, 1996. (b) Press, J. B. InThe Chemistry of Heterocyclic Compounds: Thiophene and Its Derivatives, Ed.: Gronowitz, S., John Wiley & Sons, Inc., New York, 1991.

    9. [9]

      (a) Roncali, J. Chem.Rev. 1992, 92, 711. (b) Facchetti, A.; Yoon, M. H.; Marks, T. J. Adv.Mater. 2005, 17, 1705. (c) Rath, H.; Prabhuraja, V.; Chandrashekar, T. K.; Nag, N.; Goswami, D.; Joshi, B. S. Org.Lett. 2006, 8, 2325.

    10. [10]

      (a) Jones, R. A.; Bean, G. P. The Chemistry of Pyrroles, Academic Press, London, 1977, p. 1. (b) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry, Vol. 4, Eds.: Katritzky, A. R.; Rees, C. W., Pergamon Press, Oxford, 1984, p. 370. (c) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. F. Chem.Rev. 2008, 108, 264.

    11. [11]

      (a) Fuerstner, A. Synlett 1999, 1523. (b) Higgins, S. J.Chem.Soc.Rev. 1997, 26, 247. (c) McCullough, R. D.; Ewbank, P. C. In Handbook of Conducting Polymers, Eds.: Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R., Dekker M., New York, 1998, Chapter 9.

    12. [12]

      (a) Zhu, X. Q.; Zhao, B. J.; Cheng, J. P. J.Org.Chem.2000, 65, 8158. (b) Bocker, R. H.; Guengerich, F. P. J.Med.Chem. 1986, 28, 1596. (c) Ko, K. Y.; Kim, J. Y. Terahedorn Lett. 1999, 40, 3207. (d) Itoh, T.; Nagata, K.; Matsuya, Y.; Miyazaki, M.; Ohsawa, A. J.Org.Chem. 1997, 62, 3582.

    13. [13]

      (a) Zhang, G. T.; Hu, X.; Chiang, C. W.; Yi, H.; Pei, P. K.; Singh, A. K.; Lei, A. W. J.Am.Chem.Soc. 2016, 138, 12037. (b) Zhang, G. T.; Zhang, L. L.; Yi, H.; Luo, Y.; Qi, X. T.; Tung, C. H.; Wu, L. Z.; Lei, A. W. Chem.Commun. 2016, 52, 10407. (c) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J. X.; Wu, L. Z.; Lei, A. W. J.Am.Chem.Soc. 2015, 137, 9273. (d) McKone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Chem.Sci. 2014, 5, 865. (e) Thoi, V. S.; Sun, Y. J.; Long, J. R.; Chang, C. J. Chem.Soc.Rev. 2013, 42, 2388. (f) Vincent, K. A.; Parkin, A.; Armstrong, F. A. Chem.Rev.2007, 107, 4366.

    14. [14]

      (a) Zhang, D.; Wu, L. Z.; Zhou, L.; Han, X.; Yang, Q. Z.; Zhang, L. P.; Tung, C. H. J.Am.Chem.Soc. 2004, 126, 3440. (b) Wang, D. H.; Peng, M. L.; Han, Y.; Chen, B.; Tung, C. H.; Wu, L. Z. Inorg.Chem. 2009, 49, 9995. (c) Chen, Y. Z.; Wang, D. H.; Chen, B.; Zhong, J. J.; Tung, C. H.; Wu, L. Z. J.Org.Chem. 2012, 77, 6773.

    15. [15]

      Xu, Y.; Yin, X.; Huang, Y.; Du, P.; Zhang, B. Chem.Eur.J. 2015, 21, 4571.  doi: 10.1002/chem.201406642

    16. [16]

      (a) Wang, L.; Ma, Z. G.; Wei, X. J.; Meng, Q. Y.; Yang, D. T.; Du, S. F.; Chen, Z. F.; Wu, L. Z.; Liu, Q. Green Chem.2014, 16, 3752. (b) Wei, X.; Wang, L.; Jia, W.; Du, S.; Wu, L.; Liu, Q. Chin.J.Chem.2014, 32, 1245.

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(9)
  • Abstract views(739)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return