Citation: Wang Xiaoju, Dong Kui, Liu Qiang. Visible-Light-Driven Aromatization Hydrogen Evolution by Organic Dye and Ni Complex[J]. Acta Chimica Sinica, ;2017, 75(1): 119-122. doi: 10.6023/A16080421 shu

Visible-Light-Driven Aromatization Hydrogen Evolution by Organic Dye and Ni Complex

  • Corresponding author: Liu Qiang, liuqiang@lzu.edu.cn
  • Received Date: 18 August 2016

    Fund Project: the Fundamental Research Funds for the Central Universities lzujbky-2015-49National Natural Science Foundation of China 21572090National Natural Science Foundation of China 21172102

  • Pyridine derivatives play an important role in curing and controlling mites, bacteria, weed and so on. Pyrimidine derivatives exist in a number of bioactive natural products, and they have anti-allergy, anti-cancer, anti-inflammatory, insecticidal and some other properties. 3, 4-Disubstituted thiophenes not only are important units for the synthesis of natural products, but also serve as key components in some biologically active compounds and material chemistry. In modern society, we have the urgent demand for achieving our products atom economicly and environment-friendly. Under this background, "atom-economy" reactions have been drawing great attention from many chemists and they have got many exciting improvements since then. So, we want to make our own contributions to this area and the following are some of our preliminary results. Our method was based on synergistic application of eosin Y with nickel (Ⅱ) complex and an external oxidant-free oxidative dehydrogenation aromatization has been developed. At room temperature, Hantzsch 1, 4-dihydropyridines, 1, 4-dihydropyrimidines, 2, 5-dihydrothiophenes and 2, 5-dihydropyrroles were transformed into corresponding aromatic compounds in excellent yield under visible light irradiation via hydrogen evolution. We determined the hydrogen with GC-TCD using pure hydrogen as an external standard. It features very mild reaction conditions, high yields and excellent chemo-selectivity. In the previous reports, these transformations usually required higher temperatures and/or stronger oxidizing reagents, resulting in the generation of a large amount of by-products. In addition, the hydrogen evolution reactions were also compared with those of aerobic dehydrogenation. The results indicated that the dehydrogenation aromatizations of hantzsch 1, 4-dihydropyridines and 1, 4-dihydropyrimidine derivatives under the hydrogen evolution conditions proceeded in higher yields but very low conversions, while the reactions of 2, 5-dihydrothiophenes and 2, 5-dihydropyrroles gave higher conversions in the aerobic dehydrogenation conditions. So far, this is the first report using organic dye material combined with nickel (Ⅱ) complexes to achieve dihydrogen dehydrogenation aromatization of heterocyclic compounds.
  • 加载中
    1. [1]

      (a) Li, Y. M.; Jia, F.; Ma, L. N.; Li, Z. P. Acta Chim.Sinica2015, 73, 1311 (in Chinese). (李远明, 贾凡, 马丽娜, 李志平, 化学学报, 2015, 73, 1311.) (b) Xu, W. S.; Zhao, S. J.; Bi, X. H.; Liao, P. Q. Chin. J. Org. Chem. 2015, 35, 2095 (in Chinese). (徐文帅, 赵寿经, 毕锡和, 廖沛球, 有机化学, 2015, 35, 2095.) (c) Kone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Chem.Sci. 2014, 5, 865. (d) Li, Q. H.; Huang, R.; Wang, C. J. Acta Chim.Sinica 2014, 72, 830 (in Chinese). (李清华, 黄蓉, 王春江, 化学学报, 2014, 72, 830.) (e) Dobereiner, G. E.; Crabtree, R. H. Chem.Rev. 2010, 110, 681.

    2. [2]

      Khadikar, B.; Borkat, S. Synth.Commun. 1998, 28, 207.  doi: 10.1080/00397919808005712

    3. [3]

      Ban, M.; Taquchi, H.; Katsushima, T.; Akoki, S.; Wantanbe, A. Bioorg.Med.Chem. 1998, 6, 1057.  doi: 10.1016/S0968-0896(98)00064-9

    4. [4]

      Wright, G. E.; Gombino, J. J. J.Med.Chem. 1984, 27, 181.  doi: 10.1021/jm00368a013

    5. [5]

      Jalander, L. F.; Longquist, J. E. Heterocycles 1998, 48, 743.  doi: 10.3987/COM-97-7886

    6. [6]

      Srivastva, S. K.; Agarwal, A.; Murthy, P. K.; Chauhan, P. M. S.; Agarwal, S. K.; Bhaduri, A. P.; Singh, S. N.; Fatima, N.; Chatterjee, R. K. J.Med.Chem. 1999, 42, 1667.  doi: 10.1021/jm9800705

    7. [7]

      (a) Kappe, C. O. Tetrahedron 1993, 49, 6937. (b) Kappe, C. O. Acc.Chem.Res. 2000, 33, 879. (c) Bose, D. S.; Fatima, L.; Mereyala, H. B. J.Org.Chem. 2003, 68, 587.

    8. [8]

      (a) Gribble, W. G. In Comprehensive Heterocyclic Chemistry, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, 1996. (b) Press, J. B. InThe Chemistry of Heterocyclic Compounds: Thiophene and Its Derivatives, Ed.: Gronowitz, S., John Wiley & Sons, Inc., New York, 1991.

    9. [9]

      (a) Roncali, J. Chem.Rev. 1992, 92, 711. (b) Facchetti, A.; Yoon, M. H.; Marks, T. J. Adv.Mater. 2005, 17, 1705. (c) Rath, H.; Prabhuraja, V.; Chandrashekar, T. K.; Nag, N.; Goswami, D.; Joshi, B. S. Org.Lett. 2006, 8, 2325.

    10. [10]

      (a) Jones, R. A.; Bean, G. P. The Chemistry of Pyrroles, Academic Press, London, 1977, p. 1. (b) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry, Vol. 4, Eds.: Katritzky, A. R.; Rees, C. W., Pergamon Press, Oxford, 1984, p. 370. (c) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. F. Chem.Rev. 2008, 108, 264.

    11. [11]

      (a) Fuerstner, A. Synlett 1999, 1523. (b) Higgins, S. J.Chem.Soc.Rev. 1997, 26, 247. (c) McCullough, R. D.; Ewbank, P. C. In Handbook of Conducting Polymers, Eds.: Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R., Dekker M., New York, 1998, Chapter 9.

    12. [12]

      (a) Zhu, X. Q.; Zhao, B. J.; Cheng, J. P. J.Org.Chem.2000, 65, 8158. (b) Bocker, R. H.; Guengerich, F. P. J.Med.Chem. 1986, 28, 1596. (c) Ko, K. Y.; Kim, J. Y. Terahedorn Lett. 1999, 40, 3207. (d) Itoh, T.; Nagata, K.; Matsuya, Y.; Miyazaki, M.; Ohsawa, A. J.Org.Chem. 1997, 62, 3582.

    13. [13]

      (a) Zhang, G. T.; Hu, X.; Chiang, C. W.; Yi, H.; Pei, P. K.; Singh, A. K.; Lei, A. W. J.Am.Chem.Soc. 2016, 138, 12037. (b) Zhang, G. T.; Zhang, L. L.; Yi, H.; Luo, Y.; Qi, X. T.; Tung, C. H.; Wu, L. Z.; Lei, A. W. Chem.Commun. 2016, 52, 10407. (c) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J. X.; Wu, L. Z.; Lei, A. W. J.Am.Chem.Soc. 2015, 137, 9273. (d) McKone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Chem.Sci. 2014, 5, 865. (e) Thoi, V. S.; Sun, Y. J.; Long, J. R.; Chang, C. J. Chem.Soc.Rev. 2013, 42, 2388. (f) Vincent, K. A.; Parkin, A.; Armstrong, F. A. Chem.Rev.2007, 107, 4366.

    14. [14]

      (a) Zhang, D.; Wu, L. Z.; Zhou, L.; Han, X.; Yang, Q. Z.; Zhang, L. P.; Tung, C. H. J.Am.Chem.Soc. 2004, 126, 3440. (b) Wang, D. H.; Peng, M. L.; Han, Y.; Chen, B.; Tung, C. H.; Wu, L. Z. Inorg.Chem. 2009, 49, 9995. (c) Chen, Y. Z.; Wang, D. H.; Chen, B.; Zhong, J. J.; Tung, C. H.; Wu, L. Z. J.Org.Chem. 2012, 77, 6773.

    15. [15]

      Xu, Y.; Yin, X.; Huang, Y.; Du, P.; Zhang, B. Chem.Eur.J. 2015, 21, 4571.  doi: 10.1002/chem.201406642

    16. [16]

      (a) Wang, L.; Ma, Z. G.; Wei, X. J.; Meng, Q. Y.; Yang, D. T.; Du, S. F.; Chen, Z. F.; Wu, L. Z.; Liu, Q. Green Chem.2014, 16, 3752. (b) Wei, X.; Wang, L.; Jia, W.; Du, S.; Wu, L.; Liu, Q. Chin.J.Chem.2014, 32, 1245.

  • 加载中
    1. [1]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    2. [2]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    3. [3]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    16. [16]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    17. [17]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(10)
  • Abstract views(817)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return