Citation: Wang Dehong, Zhang Long, Luo Sanzhong. Photo-induced Catalytic Asymmetric Free Radical Reactions[J]. Acta Chimica Sinica, ;2017, 75(1): 22-33. doi: 10.6023/A16080418 shu

Photo-induced Catalytic Asymmetric Free Radical Reactions

  • Corresponding author: Luo Sanzhong, luosz@iccas.ac.cn
  • Received Date: 16 August 2016

    Fund Project: the National Natural Science Foundation of China 21390400the National Natural Science Foundation of China 21572232

Figures(19)

  • Enantioselective control of free radical reactions has eluded organic chemists for decades. Echoed with the renaissance of photo-induced processes, or so called photocatalysis or photoredox catalysis in organic synthesis, photo-induced organic radical chemistry has regained its prominence in developing catalytic asymmetric radical reaction. The generally mild conditions inherited with photochemistry, particularly visible light photo-processes, have allowed for controllable generation of free radicals as well as the subsequent bond formations. The past five years have witnessed dramatic advances in exploring photo-induced catalytic asymmetric free radical reactions, and enormous potentials along this line are envisaged. This perspective gives a brief summary on the important advances in this field. Accordingly, the major advances are classified based on different radical species including α-amino/oxyl radicals, radicals generated from enones and its analogues, benzyl radicals, α-carbonyl radicals, polyhalogenated alkyl radicals and nitrogen radicals. Brief discussion of mechanism is presented whenever relevant.
  • 加载中
    1. [1]

    2. [2]

      (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163. (b) Zimmerman, J.; Sibi, M. P. Enantioselective Radical Reactions. In Radicals in Synthesis I, Springer, Berlin, Heidelberg, 2006, pp. 107~162.

    3. [3]

      (a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. Science 2007, 316, 582. (b) Comito, R. J.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 9358. (c) Jui, N. T.; Garber, J. A.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2012, 134, 11400. (d) Pham, P. V.; Ashton, K.; MacMillan, D. W. Chem. Sci. 2011, 2, 1470. (e) Mastracchio, A.; Warkentin, A. A.; Walji, A. M.; MacMillan, D. W. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20648. (f) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. Angew. Chem. Int. Ed. 2010, 49, 6106. (g) Jui, N. T.; Lee, E. C.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10015. (h) Van Humbeck, J. F.; Simonovich, S. P.; Knowles, R. R.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10012. (i) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. J. Am. Chem. Soc. 2010, 132, 6106. (j) Rendler, S.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 5027. (k) Wilson, J. E.; Casarez, A. D.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11332. (l) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11640. (m) Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. Angew. Chem. Int. Ed. 2009, 48, 5121. (n) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 16494. (o) Kim, H.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 398. (p) Jang, H. Y.; Hong, J. B.; MacMillan, D. W. J. Am. Chem. Soc. 2007, 129, 7004.

    4. [4]

    5. [5]

      Ruiz Espelt, L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.  doi: 10.1021/ja512746q

    6. [6]

      Lenhart, D.; Bauer, A.; Pöthig, A.; Bach, T. Chem. Eur. J. 2016, 22, 6519.  doi: 10.1002/chem.201600600

    7. [7]

      Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. Nature 2005, 436, 1139.  doi: 10.1038/nature03955

    8. [8]

      Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218.  doi: 10.1038/nature17438

    9. [9]

      Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768.  doi: 10.1021/jacs.5b09329

    10. [10]

      (a) Wang, C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 685. (b) Ma, J.; Harms, K.; Meggers, E. Chem. Commun. 2016, 52, 10183.

    11. [11]

      Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. J. Am. Chem. Soc. 2016, 138, 1832.  doi: 10.1021/jacs.5b13211

    12. [12]

      Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.  doi: 10.1021/ja4100595

    13. [13]

      (a) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392. (b) Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.

    14. [14]

      Shih, H. W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 13600.  doi: 10.1021/ja106593m

    15. [15]

      Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L. A.; Meggers, E. Nature 2014, 515, 100.  doi: 10.1038/nature13892

    16. [16]

      (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750. (b) Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438.

    17. [17]

      Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.  doi: 10.1021/jacs.6b03399

    18. [18]

      (a) Nicewicz, D. A.; MacMillan, D. W. Science, 2008, 322, 77. (b) Zhu, Y.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2014, 136, 14642.

    19. [19]

      Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120.  doi: 10.1021/jacs.5b01662

    20. [20]

      Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.  doi: 10.1126/science.aad8313

    21. [21]

      Nagib, D. A.; Scott, M. E.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 10875.  doi: 10.1021/ja9053338

    22. [22]

      Huo, H.; Wang, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2015, 137, 9551.  doi: 10.1021/jacs.5b06010

    23. [23]

      Woźniak, Ł.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.  doi: 10.1021/jacs.5b03243

    24. [24]

      (a) Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 11521. (b) Shen, X.; Harms, K.; Marsch, M.; Meggers, E. Chem. Eur. J. 2016, 22, 9102.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(254)
  • Abstract views(5607)
  • HTML views(1476)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return