Citation: Wang Dehong, Zhang Long, Luo Sanzhong. Photo-induced Catalytic Asymmetric Free Radical Reactions[J]. Acta Chimica Sinica, ;2017, 75(1): 22-33. doi: 10.6023/A16080418 shu

Photo-induced Catalytic Asymmetric Free Radical Reactions

  • Corresponding author: Luo Sanzhong, luosz@iccas.ac.cn
  • Received Date: 16 August 2016

    Fund Project: the National Natural Science Foundation of China 21390400the National Natural Science Foundation of China 21572232

Figures(19)

  • Enantioselective control of free radical reactions has eluded organic chemists for decades. Echoed with the renaissance of photo-induced processes, or so called photocatalysis or photoredox catalysis in organic synthesis, photo-induced organic radical chemistry has regained its prominence in developing catalytic asymmetric radical reaction. The generally mild conditions inherited with photochemistry, particularly visible light photo-processes, have allowed for controllable generation of free radicals as well as the subsequent bond formations. The past five years have witnessed dramatic advances in exploring photo-induced catalytic asymmetric free radical reactions, and enormous potentials along this line are envisaged. This perspective gives a brief summary on the important advances in this field. Accordingly, the major advances are classified based on different radical species including α-amino/oxyl radicals, radicals generated from enones and its analogues, benzyl radicals, α-carbonyl radicals, polyhalogenated alkyl radicals and nitrogen radicals. Brief discussion of mechanism is presented whenever relevant.
  • 加载中
    1. [1]

    2. [2]

      (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163. (b) Zimmerman, J.; Sibi, M. P. Enantioselective Radical Reactions. In Radicals in Synthesis I, Springer, Berlin, Heidelberg, 2006, pp. 107~162.

    3. [3]

      (a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. Science 2007, 316, 582. (b) Comito, R. J.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 9358. (c) Jui, N. T.; Garber, J. A.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2012, 134, 11400. (d) Pham, P. V.; Ashton, K.; MacMillan, D. W. Chem. Sci. 2011, 2, 1470. (e) Mastracchio, A.; Warkentin, A. A.; Walji, A. M.; MacMillan, D. W. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20648. (f) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. Angew. Chem. Int. Ed. 2010, 49, 6106. (g) Jui, N. T.; Lee, E. C.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10015. (h) Van Humbeck, J. F.; Simonovich, S. P.; Knowles, R. R.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10012. (i) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. J. Am. Chem. Soc. 2010, 132, 6106. (j) Rendler, S.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 5027. (k) Wilson, J. E.; Casarez, A. D.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11332. (l) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11640. (m) Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. Angew. Chem. Int. Ed. 2009, 48, 5121. (n) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 16494. (o) Kim, H.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 398. (p) Jang, H. Y.; Hong, J. B.; MacMillan, D. W. J. Am. Chem. Soc. 2007, 129, 7004.

    4. [4]

    5. [5]

      Ruiz Espelt, L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.  doi: 10.1021/ja512746q

    6. [6]

      Lenhart, D.; Bauer, A.; Pöthig, A.; Bach, T. Chem. Eur. J. 2016, 22, 6519.  doi: 10.1002/chem.201600600

    7. [7]

      Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. Nature 2005, 436, 1139.  doi: 10.1038/nature03955

    8. [8]

      Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218.  doi: 10.1038/nature17438

    9. [9]

      Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768.  doi: 10.1021/jacs.5b09329

    10. [10]

      (a) Wang, C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 685. (b) Ma, J.; Harms, K.; Meggers, E. Chem. Commun. 2016, 52, 10183.

    11. [11]

      Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. J. Am. Chem. Soc. 2016, 138, 1832.  doi: 10.1021/jacs.5b13211

    12. [12]

      Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.  doi: 10.1021/ja4100595

    13. [13]

      (a) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392. (b) Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.

    14. [14]

      Shih, H. W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 13600.  doi: 10.1021/ja106593m

    15. [15]

      Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L. A.; Meggers, E. Nature 2014, 515, 100.  doi: 10.1038/nature13892

    16. [16]

      (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750. (b) Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438.

    17. [17]

      Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.  doi: 10.1021/jacs.6b03399

    18. [18]

      (a) Nicewicz, D. A.; MacMillan, D. W. Science, 2008, 322, 77. (b) Zhu, Y.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2014, 136, 14642.

    19. [19]

      Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120.  doi: 10.1021/jacs.5b01662

    20. [20]

      Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.  doi: 10.1126/science.aad8313

    21. [21]

      Nagib, D. A.; Scott, M. E.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 10875.  doi: 10.1021/ja9053338

    22. [22]

      Huo, H.; Wang, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2015, 137, 9551.  doi: 10.1021/jacs.5b06010

    23. [23]

      Woźniak, Ł.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.  doi: 10.1021/jacs.5b03243

    24. [24]

      (a) Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 11521. (b) Shen, X.; Harms, K.; Marsch, M.; Meggers, E. Chem. Eur. J. 2016, 22, 9102.

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(248)
  • Abstract views(5476)
  • HTML views(1433)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return