Citation: Zhou Quanquan, Liu Dan, Xiao Wenjing, Lu Liangqiu. Visible-Light Photoredox Catalytic α-Cyanation Reactions of Tertiary Amines[J]. Acta Chimica Sinica, ;2017, 75(1): 110-114. doi: 10.6023/A16080414 shu

Visible-Light Photoredox Catalytic α-Cyanation Reactions of Tertiary Amines

  • Corresponding author: Lu Liangqiu, luliangqiu@mail.ccnu.edu.cn
  • Received Date: 15 August 2016

    Fund Project: National Natural Science Foundation of China 21232003National Natural Science Foundation of China 21572074National Natural Science Foundation of China 21472057

Figures(5)

  • Visible-light photoredox catalysis, a novel and green catalytic strategy, has recently received increasing attention from chemists and been widely applied to organic synthesis in the past years. This catalytic strategy enables the generation of various reactive species under mild conditions without stoichiometric activation reagents and shows its significance for sustainable chemistry. α-Amino nitriles are highly versatile intermediates having extensive applications in organic synthesis and biological transformation. The oxidation of tertiary amines using stoichiometric oxidants followed by the nucleophilic addition reaction of the iminium intermediate by cyanide ion (CN-) represents a direct approach for their synthesis. However, the use of stoichiometric oxidants and the production of huge amounts of hazardous waste (i.e., CN-) is undesirable from environmental viewpoints. Here, we report a photoredox catalytic α-cyanation reaction of tertiary amines using cyanobenziodoxol as a stable and safe cyanide source. This protocol is favored for mild conditions, the avoidance of extra oxidant and highly toxic cyano anion, good functional tolerance as well as safe and simple operations. By doing so, a variety of α-amino nitriles are afforded in good to excellent yields. A sunlight-driven reaction and a gram-scale reaction further demonstrate the utility of this methodology. In addition, we also succeed to apply the same strategy to the decarboxylative cyanation of carboxylic acids, affording the nitriles in moderate yields. A possible mechanism was proposed on the basis of known literature and our previous reports. The representative procedure for the α-cyanation reaction of tertiary amines is as following:N-phenyl piperidine 1a (0.48 mmol), cyanobenziodoxol 2a (0.40 mmol), photocatalyst Ir[dF (CF3) PPy]2(dtbbpy) PF6 (0.008 mmol) and CsHCO3 (0.60 mmol) were dissolved in DCM (8 mL). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times). After that, the solution was stirred at a distance of ca. 5 cm from a 7 W blue LEDs (450~460 nm) at room temperature for 16 h. Upon completion, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 30:1~10:1) directly to give the desired product. The procedure for the decarboxylative cyanation of carboxylic acids is similar.
  • 加载中
    1. [1]

      (a) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359; (b) Martinez, E. J.; Corey, E. J. Org. Lett. 1999, 1, 75; (c) Dyker, G. Angew. Chem., Int. Ed. 1997, 36, 1700; (d) North, M. Angew. Chem. Int. Ed. 2004, 43, 4126; (e) En, D.; Zou, G.-F.; Guo, Y.; Liao, W.-W. J. Org. Chem. 2014, 79, 4456; (f) Qin, T.-Y.; Zhang, X.-A.; Liao, W.-W. Chin. J. Org. Chem. 2014, 34, 2187. (秦天游, 张晓安, 寮渭巍, 有机化学, 2014, 34, 2187).

    2. [2]

      (a) Ishitani, H.; Komiyama, S.; Kobayashi, S. Angew. Chem., Int. Ed. 1998, 3186; (b) Surendra, K.; Krishnaveni, N. S.; Mahesh, A.; Rao, K. R. J. Org. Chem. 2006, 2532; (c) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.

    3. [3]

      Selected examples, see: (a) Han, W.; Ofial, A. R. Chem. Commun.2009, 33, 5024; (b) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317; (c) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312; (d) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 2354; (e) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835; (f) Lin, A.; Peng, H.; Abdukader, A.; Zhu, C. Eur. J. Org. Chem. 2013, 32, 7286; (g) Inghal, S.; Jain, S. L.; Sain, B. Chem. Commun. 2009, 2371; (h) Sakai, N.; Mutsuro, A.; Ikeda, R.; Konakahara, T. Synlett 2013, 1283; (i) Zhao, P.; Yin, Y.-W. Chin. J. Org. Chem.2004, 24, 916. (赵萍, 尹应武, 有机化学, 2004, 24, 916).

    4. [4]

      For selected reviews on the visible light photocatalysis, see: (a) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40; (b) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687; (c) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828; (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176; (f) Shaw, M. H.; Twilton, J.; MacMillan, D.W. C. J. Org. Chem. 2016, 81, 6898; (g) Karkas, M. D.; Porco, Jr J. A.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683; (h) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.

    5. [5]

      For recent examples on the visible light-induced cyanation reactions, see: (a) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709; (b) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94; (c) Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280; (d) Hari, D. P.; Konig, B. Org. Lett. 2011, 13, 3852; (e) Pacheco, O. J. C.; Lipp, A.; Nauth, A. M.; Acke, F.; Dietz, J. P.; Opatz, T. Chem. Eur. J. 2016, 22, 5409.

    6. [6]

      (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299; (b) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 2013; (c) Li, Y.-F.; Hari, D.-P.; Vita, M. V.; Waser, J. Angew. Chem., Int. Ed. 2016, 55, 4436.

    7. [7]

      For recent works on visible light photocatalysis from our group, see: (a) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653; (b) Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. Eur. J. 2014, 20, 3045; (c) Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed.2015, 54, 1625; (d) Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265; (e) Zeng, T.-T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2015, 17, 4070.

    8. [8]

      Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.  doi: 10.1002/anie.201504559

    9. [9]

      For the use of hypervalent iodine CN reagent 2a in organic synthesis, see: (a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Mismash, B.; Woodward, J. K.; Simonsen, A. J. Tetrahedron Lett. 1995, 36, 7975; (b) Frei, R.; Courant, T.; Wodrich, M. D.; Waser, J. Chem. Eur. J. 2015, 21, 2662. For representative examples of cyanation reaction using 2b~2d as a cyano source, see: (c) Barton, D. H. R.; Jaszberenyl, J. C.; Theodorakis, E. A. Tetrahedron 1992, 48, 2613; (d) Kim, S.; Song, H. J. Synlett 2002, 2110; (e) Kim, S.; Cho, C. H.; Kim, S.; Uenoyama, Y.; Ryu, I. Synlett 2005, 3160; (f) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4519; (g) Dai, J.-J.; Zhang, W.-W.; Shu, Y.-J.; Sun, Y.-Y.; Xu, J.; Feng, Y.-S.; Xu, H.-J. Chem. Commun. 2016, 52, 6793; (h) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660; (i) Shu, Z.; Ji, W.; Wang, X.; Zhou, Y.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 2186.

    10. [10]

      For a selected review, see: Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.

    11. [11]

      For recent examples, see: (a) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872; (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374; (c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830; (d) Ventre, S.; Petronijevi, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654; (e) Zhou, C.; Li, P.-H.; Zhu, X.-J.; Wang, L. Org. Lett. 2015, 17, 6198; (f) Vaillant, F. L.; Courant, T.; Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200; (g) Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340; (h) Candish, L.; Pitzer, L.; Gomez-Suarez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753; (i) Song, H.-T.; Ding, W.; Zhou, Q.-Q.; Liu, J.; Lu, L.-Q.; Xiao, W.-J. J. Org. Chem. 2016, 81, 7250.

    12. [12]

      Liu, W.; Ma, Y.; Yin, Y.; Zhao, Y. Bull. Chem. Soc. Jpn. 2006, 79, 577.  doi: 10.1246/bcsj.79.577

    13. [13]

      Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.  doi: 10.1021/jacs.5b08304

    14. [14]

      (a) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330; (b) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280; (c) Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Yan Su Yuzhen Pan Fuping Tian Xiuyun Wang Tieqi Xu Yongce Zhang Miao Cui Wenfeng Jiang . Construction and Practice of the National Chemical Experimental Teaching Demonstration Center under the Background of Digital Education. University Chemistry, 2024, 39(7): 218-222. doi: 10.12461/PKU.DXHX202406001

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(24)
  • Abstract views(1389)
  • HTML views(242)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return