Citation: Shao Tianju, Jiang Zhiyong. Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones[J]. Acta Chimica Sinica, ;2017, 75(1): 70-73. doi: 10.6023/A16080407 shu

Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones

  • Corresponding author: Jiang Zhiyong, chmjzy@henu.edu.cn
  • Received Date: 13 August 2016

    Fund Project: and the Science and Technology Department of Henan Province 14IRTSTHN006and the Science and Technology Department of Henan Province 152300410057National Natural Science Foundation of China 21672052National Natural Science Foundation of China 21072044

Figures(2)

  • A visible-light-induced photocatalytic aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones has been developed. By utilizing dicyanopyrazine-derived chromophore (DPZ) as the photocatalyst, the dehydrogenation could provide 2, 3-dihydro-4-pyridones and 4-quinolones with satisfactory results (up to 75% yield). The current methodology presents a direct, sustainable and highly atom-economic approach to access these valuable N-containing heterocycles.
  • 

    1    Introduction

    2, 3-Dihydro-4-pyridones are a key class of N-containing heterocycles frequently employed as intermediates to build a number of biologically important N-heterocyclic compounds.[1] As their analogues, 4-quinolones not only can be used as precursors for diverse bioactive molecules, [2] but also are main frameworks of several compounds with particular pharmaceutical values.[3] Dehydrogenation of 4-piperidones have been demonstrated as a direct method to access 2, 3-dihydro-4-pyridones.[4] For example, Nicolaou and co-workers[4a, 4b] introduced IBX·MPO as an effective dehydrogenation reagent for 4-piperidones to afford 2, 3-dihydro-4-pyridones. The Stahl group[4c] realized a dehydrogenation by applying Pd (DMSO)2(TFA)2 as a catalyst and molecular oxygen as the oxidant. These methods suffer from stoichiometric amount of dehydrogenation reagent or expensive transition metal. In a few two-step strategies, stoichiometric amount of unsustainable oxidant (mCPBA[4d]) or toxic bromination reagent (Br2[1a, 1d]) is often necessary. To date, more synthetic methods have been documented for 4-quinolones, [5] including the condensation of anilines with Meldrum's acid and trimethyl orthoformates, [6] the Camps cyclization, [2d, 7] copper-[8] and palladium-catalyzed[9] amidation of aryl halides, etc.[2d, 10] However, the inconvenient multi-step process and harsh reaction conditions represent their limitations. Meanwhile, to our knowledge, no example has been described to concurrently facilitate the synthesis of both 2, 3-dihydro-4-pyridones and 4-quinolones.

    In the past few years, visible light photocatalysis as a green and sustainable protocol has been appreciated as a powerful tool in organic synthesis.[11] We recently reported dicyanopyrazine-derived chromophore (DPZ) as a new type of metal-free photocatalyst that facilitated a series of transformations with high efficiency.[12] In these works, we have shown that the activated DPZ* [Et(S*/S·−)=0.91 V vs SCE in CH2Cl2] can oxidize N-aryl-substituted tertiary amines through single electron transfer (SET). Therefore, N-aryl-substituted 4-piperidones and 2, 3-dihydro-4-quinolones 1 [e.g. compound 1a: Ered 1/2=0.96 V vs SCE in CH3CN] should have a thermodynamically feasible transformation to generate R3N (2) when in the presence of DPZ*. The species 2 could further react with O2−· species to generate iminium 3 (Scheme 1). In the presence of HOO or a suitable base, the deprotonation of α-H of ketone seems feasible, thus leading to 2, 3-dihydro-4-pyridones or 4-quinolones 4.[12b] Accordingly, we were intrigued to investigate visible light photocatalytic aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones with DPZ as the catalyst, which would provide a highly atom-economic and direct approach to access these valuable N-containing entities. Two major challenges, that are the unknown reactivity and the elusive chemoselectivity for the probably generated amides[11a] as the side products, should remain in this desired task.

    Figure Scheme 1. Proposed catalytic cycle for aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones 1

    2    Results and Discussion

    Our study was initiated with the model reaction of N-phenyl-substituted 4-piperidone 1a in the presence of 0.5 mol% of DPZ at 25 ℃ under irradiation from a 3 W blue LED (λ=450~455 nm) and ambient atmosphere (Table 1). The reaction was first carried out in toluene as the solvent (Entry 1). It was found that the reaction was finished after 12 h, and to our delight, the desired dehydrogenation product 4a could be obtained in 31% yield. It is worth mentioning that no amide was found in the reaction mixture while several unknown by-products were observed. A screening of solvents (Entries 2~6) proved that CH3CN was the best, providing 4a in 45% yield within 0.8 h (Entry 4). The effect of additive was subsequently evaluated (Entries 7~13). When 0.5 equiv. of KH2PO4 was used, the yield was decreased to 30% (Entry 7). In contrast, the basic K2HPO4 was found to slightly improve the yield to 48% (Entry 8), demonstrating that the basic conditions would benefit the chemoselectivity. In this context, K2CO3 and NaOH with stronger basicity were examined (Entries 9, 10), but the yield was deteriorated, especially for NaOH (Entry 10). A variety of organic bases were also tested (Entries 11~13). We were pleased to find that Et3N could promote the yield to 62% (Entry 11). When the amount of Et3N was decreased to 0.25 equiv., the reaction could be finished in 0.5 h, and provided 4a in 67% yield (Entry 14). Lower or higher amount of Et3N were found to give lower yields (Entries 15, 16). We also anticipated improving the chemoselectivity through modulating the reaction temperature. However, only 56% yield of 4a was obtained when the reaction was performed at 10 ℃ (Entry 17). The best catalyst loading of DPZ was demonstrated as 0.5 mol% since no better result could be attained whatever 0.25 mol% or 1.0 mol% of DPZ was used (Entries 18, 19). The reaction became very sluggish when in the absence of DPZ, and only trace 4a was detected after 24 h through TLC analysis (Entry 20). Moreover, no reaction was observed in the presence of DPZ but without light (Entry 21). These results revealed that photoactivation in the presence of both light and the photocatalyst DPZ is indispensable for the photocatalytic dehydrogenation to occur. Notably, a series of common used transition-metal and organic photocatalysts, such as Ru (bpy)3Cl2, rose Bengal (RB), eosin Y (EY) and rhodanmine B, have also been examined under the established reaction conditions, but no better result could be achieved.[13]

    Table1. Optimization of reaction conditionsa
    Entry Conditions tb/h Yieldc/%
    1 toluene 12.0 31
    2 CH2Cl2 12.0 Ttrace
    3 THF 5.0 25
    4 CH3CN 0.8 45
    5 DMF 3.0 38
    6 EtOH 5.0 32
    7 CH3CN, KH2PO4 (0.5 equiv.) 0.8 30
    8 CH3CN, K2HPO4 (0.5 equiv.) 0.8 48
    9 CH3CN, K2CO3 (0.5 equiv.) 0.8 40
    10 CH3CN, NaOH (0.5 equiv.) 0.8 25
    11 CH3CN, Et3N (0.5 equiv.) 0.8 62
    12 CH3CN, TMG (0.5 equiv.) 1.2 50
    13 CH3CN, DMAP (0.5 equiv.) 0.5 52
    14 CH3CN, Et3N (0.25 equiv.) 0.5 67
    15 CH3CN, Et3N (0.10 equiv.) 1.0 58
    16 CH3CN, Et3N (1.0 equiv.) 0.6 58
    17 CH3CN, Et3N (1.00 equiv), 10 ℃ 0.5 56
    18 DPZ (0.25 mol%), CH3CN, Et3N (0.25 equiv.) 0.5 46
    19 DPZ (1.0 mol%), CH3CN, Et3N (0.25 equiv.) 0.5 52
    20 No DPZ, CH3CN, Et3N (0.25 equiv.) 24 Trace
    21 No light, CH3CN, Et3N (0.25 equiv.) 24 N.R.
    a0.05 mmol scale; bThe reaction time was determined by the complete consumption of 1a. cIsolated yield.
    Table1. Optimization of reaction conditionsa

    With the optimal dehydrogenation conditions in hand, we next sought to evaluate the scope of N-aryl-substituted 4-piperidones and 2, 3-dihydro-4-quinolones (Scheme 2). A series of N-aryl substituted 4-piperidones were first subjected to the reaction conditions (4a~4k). It was observed that the reactions were finished in 35 min, affording the corresponding 2, 3-dihydro-4-pyridones 4a~4k in moderate yields except of 4i, of which N-aryl group contains a strong electron-withdrawing nitro substituent on its para-position. Subsequently, N-aryl-substituted 2, 3-dihydro-4-quinolones were attempted, and the desired 4-quinolones 4l~4o also could be obtained in 57%~69% yields within 35 min.

    Figure Scheme 2. Investigation of substrate scope. 0.1 mmol scale, isolated yield

    As depicted in our proposed catalytic cycle for this reaction (Scheme 1), H2O2 should be a reasonable by-product. Therefore, we attempted to examine the existence of H2O2 in the aerobic dehydrogenation of 1a. An iodide test (KI in glacial acetic acid) was performed, and a color change to dark red robustly supported the presence of H2O2 in the crude reaction mixture.[13]

    To verify the synthetic value of this work, we next performed the dehydrogenation reaction of 1a on a 1.0 mmol scale (Eq. 1). It was found that the reaction was finished after 8 h, affording 4a in 58% yield. In order to enhance the reaction rate, we attempted the reaction under oxygen atmosphere, although no obvious improvement was observed when the reaction was conducted on a 0.1 mmol scale. We were pleased to find that the reaction could be finished within 2 h, and 4a was obtained in 63% yield.

    3    Conclusion

    In summary, we have developed the first visible light photocatalytic aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones by utilizing DPZ as the photocatalyst. The current method provides a direct, sustainable and highly atom-economic approach to build two kinds of biologically important N-containing heterocycles, i.e. 2, 3-dihydro-4-pyridones and 4-quinolones, with satisfactory results. The employment of DPZ in visible light photocatalysis, especially for the synthesis of significant N-heterocyclic compounds, is in progress in our laboratory.

    1. [1]

      For selected examples, see: (a) Kozikowski, A. P.; Park, P.-U. J. Org. Chem. 1990, 55, 4668; (b) Shintani, R.; Hayashi, T. Nat. Protoc. 2007, 2, 2903; (c) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433; (d) Ye, X. M.; Konradi, A. W.; Smith, J.; Xu, Y.-Z.; Dressen, D.; Garofalo, A. W.; Marugg, J.; Sham, H. L.; Truong, A. P.; Jagodzinski, J.; Pleiss, M.; Zhang, H.; Goldbach, E.; Sauer, J.-M.; Brigham, E.; Bova, M.; Basi, G. S. 2010, 20, 2195; (e) Gordeev, M. F.; Yuan, Z. Y. J. Med. Chem. 2014, 57, 4487.

    2. [2]

      For selected examples, see: (a) Huang, X.; Liu, Z.J. Org. Chem. 2002, 67, 6731; (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317; (c) Biswas, K.; Peterkin, T. A. N.; Bryan, M. C.; Arik, L.; Arik, L.; Lehto, S. G.; Sun, H.; Hsieh, F.-Y.; Xu, C.; Fremeau, R. T.; Allen, J. R. J. Med. Chem. 2011, 54, 7232; (d) Brouwer, C.; Jenko, K.; Zoghbi, S. S.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2014, 57, 6240; (e) Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem. Eur. J. 2015, 21, 2339; (f) Liu, J.; Li, Z.; Tong, P.; Xie, Z.; Zhang, Y.; Li, Y. J. Org. Chem. 2015, 80, 1632.

    3. [3]

      (a) Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu, G. J. Am. Chem. Soc. 2000, 43, 3799; (b) Wang, S.; Lin, J.; He, P.; Zuo, J.; Long, Y. Acta Chim. Sinica 2014, 72, 906 (王沈丰, 林建平, 何佩岚, 左建平, 龙亚秋, 化学学报, 2014, 72, 906.); (c) Enoki, Y.; Ishima, Y.; Tanaka, R.; Sato, K.; Kimachi, K.; Shirai, T.; Watanabe, H.; Chuang, V. T. G.; Fujiwara, Y.; Takeya, M.; Otagiri, M.; Maruyama, T. Plos One 2015, DOI:10.1371/journal.pone.0130248.

    4. [4]

      (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993; (b) Šebesta, R.; Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2005, 1711; (c) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566; (d) Kuehne, M. E.; Muth, R. S. J. Org. Chem. 1991, 56, 2701; (e) Niphaki, M. J.; Turunen, B. J.; Georg, G. I. J. Org. Chem. 2010, 75, 6793.

    5. [5]

      For a selected review, see:Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, M. M. Curr. Org. Chem. 2005, 9, 141.

    6. [6]

      For selected examples, see: (a) Werner, W. Tetrahedron 1969, 25, 255; (b) Chen, B.; Huang, X.; Wang, J. Synthesis 1987, 482; (c) Madrid, P. B.; Sherrill, J.; Liou, A. P.; Weisman, J. L.; Derisi, J. L.; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.

    7. [7]

      Camps, R. Chem. Ber. 1899, 32, 3228.  doi: 10.1002/(ISSN)1099-0682

    8. [8]

      For selected examples, see: (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120.

    9. [9]

      For selected examples, see: (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.

    10. [10]

      (a) Tois, J.; Vahermo, M.; Koskinen, A. Tetrahedron Lett. 2005, 46, 735; (b) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609; (c) Ward, T. R.; Turunen, B. J.; Haack, T.; Neuenswander, B.; Shadrick, W.; Georg, G. I. Tetrahedron Lett. 2009, 50, 6494; (d) Mphahlele, M. J. J. Heterocycl. Chem. 2010, 47, 1; (e) Lange, J.; Bissember, A. C.; Banwell, M. G.; Cade, I. A.Aust. J. Chem. 2011, 64, 454.

    11. [11]

      For selected recent reviews, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (b) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323; (c) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473; (d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985; (f) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J.Angew. Chem., Int. Ed. 2015, 54, 15632; (g) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474; (h) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.

    12. [12]

      (a) Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.; Bureš, F.; Jiang, Z. RSC Adv. 2014, 4, 30062; (b) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443. (c) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708; (d) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.

    13. [13]

      See the supporting information for details.

    1. [1]

      For selected examples, see: (a) Kozikowski, A. P.; Park, P.-U. J. Org. Chem. 1990, 55, 4668; (b) Shintani, R.; Hayashi, T. Nat. Protoc. 2007, 2, 2903; (c) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433; (d) Ye, X. M.; Konradi, A. W.; Smith, J.; Xu, Y.-Z.; Dressen, D.; Garofalo, A. W.; Marugg, J.; Sham, H. L.; Truong, A. P.; Jagodzinski, J.; Pleiss, M.; Zhang, H.; Goldbach, E.; Sauer, J.-M.; Brigham, E.; Bova, M.; Basi, G. S. 2010, 20, 2195; (e) Gordeev, M. F.; Yuan, Z. Y. J. Med. Chem. 2014, 57, 4487.

    2. [2]

      For selected examples, see: (a) Huang, X.; Liu, Z.J. Org. Chem. 2002, 67, 6731; (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317; (c) Biswas, K.; Peterkin, T. A. N.; Bryan, M. C.; Arik, L.; Arik, L.; Lehto, S. G.; Sun, H.; Hsieh, F.-Y.; Xu, C.; Fremeau, R. T.; Allen, J. R. J. Med. Chem. 2011, 54, 7232; (d) Brouwer, C.; Jenko, K.; Zoghbi, S. S.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2014, 57, 6240; (e) Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem. Eur. J. 2015, 21, 2339; (f) Liu, J.; Li, Z.; Tong, P.; Xie, Z.; Zhang, Y.; Li, Y. J. Org. Chem. 2015, 80, 1632.

    3. [3]

      (a) Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu, G. J. Am. Chem. Soc. 2000, 43, 3799; (b) Wang, S.; Lin, J.; He, P.; Zuo, J.; Long, Y. Acta Chim. Sinica 2014, 72, 906 (王沈丰, 林建平, 何佩岚, 左建平, 龙亚秋, 化学学报, 2014, 72, 906.); (c) Enoki, Y.; Ishima, Y.; Tanaka, R.; Sato, K.; Kimachi, K.; Shirai, T.; Watanabe, H.; Chuang, V. T. G.; Fujiwara, Y.; Takeya, M.; Otagiri, M.; Maruyama, T. Plos One 2015, DOI:10.1371/journal.pone.0130248.

    4. [4]

      (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993; (b) Šebesta, R.; Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2005, 1711; (c) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566; (d) Kuehne, M. E.; Muth, R. S. J. Org. Chem. 1991, 56, 2701; (e) Niphaki, M. J.; Turunen, B. J.; Georg, G. I. J. Org. Chem. 2010, 75, 6793.

    5. [5]

      For a selected review, see:Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, M. M. Curr. Org. Chem. 2005, 9, 141.

    6. [6]

      For selected examples, see: (a) Werner, W. Tetrahedron 1969, 25, 255; (b) Chen, B.; Huang, X.; Wang, J. Synthesis 1987, 482; (c) Madrid, P. B.; Sherrill, J.; Liou, A. P.; Weisman, J. L.; Derisi, J. L.; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.

    7. [7]

      Camps, R. Chem. Ber. 1899, 32, 3228.  doi: 10.1002/(ISSN)1099-0682

    8. [8]

      For selected examples, see: (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120.

    9. [9]

      For selected examples, see: (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.

    10. [10]

      (a) Tois, J.; Vahermo, M.; Koskinen, A. Tetrahedron Lett. 2005, 46, 735; (b) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609; (c) Ward, T. R.; Turunen, B. J.; Haack, T.; Neuenswander, B.; Shadrick, W.; Georg, G. I. Tetrahedron Lett. 2009, 50, 6494; (d) Mphahlele, M. J. J. Heterocycl. Chem. 2010, 47, 1; (e) Lange, J.; Bissember, A. C.; Banwell, M. G.; Cade, I. A.Aust. J. Chem. 2011, 64, 454.

    11. [11]

      For selected recent reviews, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (b) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323; (c) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473; (d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985; (f) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J.Angew. Chem., Int. Ed. 2015, 54, 15632; (g) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474; (h) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.

    12. [12]

      (a) Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.; Bureš, F.; Jiang, Z. RSC Adv. 2014, 4, 30062; (b) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443. (c) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708; (d) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.

    13. [13]

      See the supporting information for details.

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    3. [3]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    4. [4]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    5. [5]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    6. [6]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    7. [7]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    8. [8]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    9. [9]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    10. [10]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    11. [11]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    12. [12]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    13. [13]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    14. [14]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    15. [15]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    16. [16]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    17. [17]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    18. [18]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    19. [19]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    20. [20]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

Metrics
  • PDF Downloads(18)
  • Abstract views(1241)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return