Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones
- Corresponding author: Jiang Zhiyong, chmjzy@henu.edu.cn
Citation:
Shao Tianju, Jiang Zhiyong. Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones[J]. Acta Chimica Sinica,
;2017, 75(1): 70-73.
doi:
10.6023/A16080407
2, 3-Dihydro-4-pyridones are a key class of N-containing heterocycles frequently employed as intermediates to build a number of biologically important N-heterocyclic compounds.[1] As their analogues, 4-quinolones not only can be used as precursors for diverse bioactive molecules, [2] but also are main frameworks of several compounds with particular pharmaceutical values.[3] Dehydrogenation of 4-piperidones have been demonstrated as a direct method to access 2, 3-dihydro-4-pyridones.[4] For example, Nicolaou and co-workers[4a, 4b] introduced IBX·MPO as an effective dehydrogenation reagent for 4-piperidones to afford 2, 3-dihydro-4-pyridones. The Stahl group[4c] realized a dehydrogenation by applying Pd (DMSO)2(TFA)2 as a catalyst and molecular oxygen as the oxidant. These methods suffer from stoichiometric amount of dehydrogenation reagent or expensive transition metal. In a few two-step strategies, stoichiometric amount of unsustainable oxidant (mCPBA[4d]) or toxic bromination reagent (Br2[1a, 1d]) is often necessary. To date, more synthetic methods have been documented for 4-quinolones, [5] including the condensation of anilines with Meldrum's acid and trimethyl orthoformates, [6] the Camps cyclization, [2d, 7] copper-[8] and palladium-catalyzed[9] amidation of aryl halides, etc.[2d, 10] However, the inconvenient multi-step process and harsh reaction conditions represent their limitations. Meanwhile, to our knowledge, no example has been described to concurrently facilitate the synthesis of both 2, 3-dihydro-4-pyridones and 4-quinolones.
In the past few years, visible light photocatalysis as a green and sustainable protocol has been appreciated as a powerful tool in organic synthesis.[11] We recently reported dicyanopyrazine-derived chromophore (DPZ) as a new type of metal-free photocatalyst that facilitated a series of transformations with high efficiency.[12] In these works, we have shown that the activated DPZ* [Et(S*/S·−)=0.91 V vs SCE in CH2Cl2] can oxidize N-aryl-substituted tertiary amines through single electron transfer (SET). Therefore, N-aryl-substituted 4-piperidones and 2, 3-dihydro-4-quinolones 1 [e.g. compound 1a: Ered 1/2=0.96 V vs SCE in CH3CN] should have a thermodynamically feasible transformation to generate R3N+· (2) when in the presence of DPZ*. The species 2 could further react with O2−· species to generate iminium 3 (Scheme 1). In the presence of HOO− or a suitable base, the deprotonation of α-H of ketone seems feasible, thus leading to 2, 3-dihydro-4-pyridones or 4-quinolones 4.[12b] Accordingly, we were intrigued to investigate visible light photocatalytic aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones with DPZ as the catalyst, which would provide a highly atom-economic and direct approach to access these valuable N-containing entities. Two major challenges, that are the unknown reactivity and the elusive chemoselectivity for the probably generated amides[11a] as the side products, should remain in this desired task.
Our study was initiated with the model reaction of N-phenyl-substituted 4-piperidone 1a in the presence of 0.5 mol% of DPZ at 25 ℃ under irradiation from a 3 W blue LED (λ=450~455 nm) and ambient atmosphere (Table 1). The reaction was first carried out in toluene as the solvent (Entry 1). It was found that the reaction was finished after 12 h, and to our delight, the desired dehydrogenation product 4a could be obtained in 31% yield. It is worth mentioning that no amide was found in the reaction mixture while several unknown by-products were observed. A screening of solvents (Entries 2~6) proved that CH3CN was the best, providing 4a in 45% yield within 0.8 h (Entry 4). The effect of additive was subsequently evaluated (Entries 7~13). When 0.5 equiv. of KH2PO4 was used, the yield was decreased to 30% (Entry 7). In contrast, the basic K2HPO4 was found to slightly improve the yield to 48% (Entry 8), demonstrating that the basic conditions would benefit the chemoselectivity. In this context, K2CO3 and NaOH with stronger basicity were examined (Entries 9, 10), but the yield was deteriorated, especially for NaOH (Entry 10). A variety of organic bases were also tested (Entries 11~13). We were pleased to find that Et3N could promote the yield to 62% (Entry 11). When the amount of Et3N was decreased to 0.25 equiv., the reaction could be finished in 0.5 h, and provided 4a in 67% yield (Entry 14). Lower or higher amount of Et3N were found to give lower yields (Entries 15, 16). We also anticipated improving the chemoselectivity through modulating the reaction temperature. However, only 56% yield of 4a was obtained when the reaction was performed at 10 ℃ (Entry 17). The best catalyst loading of DPZ was demonstrated as 0.5 mol% since no better result could be attained whatever 0.25 mol% or 1.0 mol% of DPZ was used (Entries 18, 19). The reaction became very sluggish when in the absence of DPZ, and only trace 4a was detected after 24 h through TLC analysis (Entry 20). Moreover, no reaction was observed in the presence of DPZ but without light (Entry 21). These results revealed that photoactivation in the presence of both light and the photocatalyst DPZ is indispensable for the photocatalytic dehydrogenation to occur. Notably, a series of common used transition-metal and organic photocatalysts, such as Ru (bpy)3Cl2, rose Bengal (RB), eosin Y (EY) and rhodanmine B, have also been examined under the established reaction conditions, but no better result could be achieved.[13]
![]() | |||
Entry | Conditions | tb/h | Yieldc/% |
1 | toluene | 12.0 | 31 |
2 | CH2Cl2 | 12.0 | Ttrace |
3 | THF | 5.0 | 25 |
4 | CH3CN | 0.8 | 45 |
5 | DMF | 3.0 | 38 |
6 | EtOH | 5.0 | 32 |
7 | CH3CN, KH2PO4 (0.5 equiv.) | 0.8 | 30 |
8 | CH3CN, K2HPO4 (0.5 equiv.) | 0.8 | 48 |
9 | CH3CN, K2CO3 (0.5 equiv.) | 0.8 | 40 |
10 | CH3CN, NaOH (0.5 equiv.) | 0.8 | 25 |
11 | CH3CN, Et3N (0.5 equiv.) | 0.8 | 62 |
12 | CH3CN, TMG (0.5 equiv.) | 1.2 | 50 |
13 | CH3CN, DMAP (0.5 equiv.) | 0.5 | 52 |
14 | CH3CN, Et3N (0.25 equiv.) | 0.5 | 67 |
15 | CH3CN, Et3N (0.10 equiv.) | 1.0 | 58 |
16 | CH3CN, Et3N (1.0 equiv.) | 0.6 | 58 |
17 | CH3CN, Et3N (1.00 equiv), 10 ℃ | 0.5 | 56 |
18 | DPZ (0.25 mol%), CH3CN, Et3N (0.25 equiv.) | 0.5 | 46 |
19 | DPZ (1.0 mol%), CH3CN, Et3N (0.25 equiv.) | 0.5 | 52 |
20 | No DPZ, CH3CN, Et3N (0.25 equiv.) | 24 | Trace |
21 | No light, CH3CN, Et3N (0.25 equiv.) | 24 | N.R. |
a0.05 mmol scale; bThe reaction time was determined by the complete consumption of 1a. cIsolated yield. |
With the optimal dehydrogenation conditions in hand, we next sought to evaluate the scope of N-aryl-substituted 4-piperidones and 2, 3-dihydro-4-quinolones (Scheme 2). A series of N-aryl substituted 4-piperidones were first subjected to the reaction conditions (4a~4k). It was observed that the reactions were finished in 35 min, affording the corresponding 2, 3-dihydro-4-pyridones 4a~4k in moderate yields except of 4i, of which N-aryl group contains a strong electron-withdrawing nitro substituent on its para-position. Subsequently, N-aryl-substituted 2, 3-dihydro-4-quinolones were attempted, and the desired 4-quinolones 4l~4o also could be obtained in 57%~69% yields within 35 min.
As depicted in our proposed catalytic cycle for this reaction (Scheme 1), H2O2 should be a reasonable by-product. Therefore, we attempted to examine the existence of H2O2 in the aerobic dehydrogenation of 1a. An iodide test (KI in glacial acetic acid) was performed, and a color change to dark red robustly supported the presence of H2O2 in the crude reaction mixture.[13]
To verify the synthetic value of this work, we next performed the dehydrogenation reaction of 1a on a 1.0 mmol scale (Eq. 1). It was found that the reaction was finished after 8 h, affording 4a in 58% yield. In order to enhance the reaction rate, we attempted the reaction under oxygen atmosphere, although no obvious improvement was observed when the reaction was conducted on a 0.1 mmol scale. We were pleased to find that the reaction could be finished within 2 h, and 4a was obtained in 63% yield.
In summary, we have developed the first visible light photocatalytic aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones by utilizing DPZ as the photocatalyst. The current method provides a direct, sustainable and highly atom-economic approach to build two kinds of biologically important N-containing heterocycles, i.e. 2, 3-dihydro-4-pyridones and 4-quinolones, with satisfactory results. The employment of DPZ in visible light photocatalysis, especially for the synthesis of significant N-heterocyclic compounds, is in progress in our laboratory.
For selected examples, see: (a) Kozikowski, A. P.; Park, P.-U. J. Org. Chem. 1990, 55, 4668; (b) Shintani, R.; Hayashi, T. Nat. Protoc. 2007, 2, 2903; (c) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433; (d) Ye, X. M.; Konradi, A. W.; Smith, J.; Xu, Y.-Z.; Dressen, D.; Garofalo, A. W.; Marugg, J.; Sham, H. L.; Truong, A. P.; Jagodzinski, J.; Pleiss, M.; Zhang, H.; Goldbach, E.; Sauer, J.-M.; Brigham, E.; Bova, M.; Basi, G. S. 2010, 20, 2195; (e) Gordeev, M. F.; Yuan, Z. Y. J. Med. Chem. 2014, 57, 4487.
For selected examples, see: (a) Huang, X.; Liu, Z.J. Org. Chem. 2002, 67, 6731; (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317; (c) Biswas, K.; Peterkin, T. A. N.; Bryan, M. C.; Arik, L.; Arik, L.; Lehto, S. G.; Sun, H.; Hsieh, F.-Y.; Xu, C.; Fremeau, R. T.; Allen, J. R. J. Med. Chem. 2011, 54, 7232; (d) Brouwer, C.; Jenko, K.; Zoghbi, S. S.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2014, 57, 6240; (e) Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem. Eur. J. 2015, 21, 2339; (f) Liu, J.; Li, Z.; Tong, P.; Xie, Z.; Zhang, Y.; Li, Y. J. Org. Chem. 2015, 80, 1632.
(a) Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu, G. J. Am. Chem. Soc. 2000, 43, 3799; (b) Wang, S.; Lin, J.; He, P.; Zuo, J.; Long, Y. Acta Chim. Sinica 2014, 72, 906 (王沈丰, 林建平, 何佩岚, 左建平, 龙亚秋, 化学学报, 2014, 72, 906.); (c) Enoki, Y.; Ishima, Y.; Tanaka, R.; Sato, K.; Kimachi, K.; Shirai, T.; Watanabe, H.; Chuang, V. T. G.; Fujiwara, Y.; Takeya, M.; Otagiri, M.; Maruyama, T. Plos One 2015, DOI:10.1371/journal.pone.0130248.
(a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993; (b) Šebesta, R.; Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2005, 1711; (c) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566; (d) Kuehne, M. E.; Muth, R. S. J. Org. Chem. 1991, 56, 2701; (e) Niphaki, M. J.; Turunen, B. J.; Georg, G. I. J. Org. Chem. 2010, 75, 6793.
For a selected review, see:Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, M. M. Curr. Org. Chem. 2005, 9, 141.
For selected examples, see: (a) Werner, W. Tetrahedron 1969, 25, 255; (b) Chen, B.; Huang, X.; Wang, J. Synthesis 1987, 482; (c) Madrid, P. B.; Sherrill, J.; Liou, A. P.; Weisman, J. L.; Derisi, J. L.; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.
Camps, R. Chem. Ber. 1899, 32, 3228.
doi: 10.1002/(ISSN)1099-0682
For selected examples, see: (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120.
For selected examples, see: (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.
(a) Tois, J.; Vahermo, M.; Koskinen, A. Tetrahedron Lett. 2005, 46, 735; (b) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609; (c) Ward, T. R.; Turunen, B. J.; Haack, T.; Neuenswander, B.; Shadrick, W.; Georg, G. I. Tetrahedron Lett. 2009, 50, 6494; (d) Mphahlele, M. J. J. Heterocycl. Chem. 2010, 47, 1; (e) Lange, J.; Bissember, A. C.; Banwell, M. G.; Cade, I. A.Aust. J. Chem. 2011, 64, 454.
For selected recent reviews, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (b) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323; (c) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473; (d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985; (f) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J.Angew. Chem., Int. Ed. 2015, 54, 15632; (g) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474; (h) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.
(a) Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.; Bureš, F.; Jiang, Z. RSC Adv. 2014, 4, 30062; (b) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443. (c) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708; (d) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.
See the supporting information for details.
For selected examples, see: (a) Kozikowski, A. P.; Park, P.-U. J. Org. Chem. 1990, 55, 4668; (b) Shintani, R.; Hayashi, T. Nat. Protoc. 2007, 2, 2903; (c) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433; (d) Ye, X. M.; Konradi, A. W.; Smith, J.; Xu, Y.-Z.; Dressen, D.; Garofalo, A. W.; Marugg, J.; Sham, H. L.; Truong, A. P.; Jagodzinski, J.; Pleiss, M.; Zhang, H.; Goldbach, E.; Sauer, J.-M.; Brigham, E.; Bova, M.; Basi, G. S. 2010, 20, 2195; (e) Gordeev, M. F.; Yuan, Z. Y. J. Med. Chem. 2014, 57, 4487.
For selected examples, see: (a) Huang, X.; Liu, Z.J. Org. Chem. 2002, 67, 6731; (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317; (c) Biswas, K.; Peterkin, T. A. N.; Bryan, M. C.; Arik, L.; Arik, L.; Lehto, S. G.; Sun, H.; Hsieh, F.-Y.; Xu, C.; Fremeau, R. T.; Allen, J. R. J. Med. Chem. 2011, 54, 7232; (d) Brouwer, C.; Jenko, K.; Zoghbi, S. S.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2014, 57, 6240; (e) Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem. Eur. J. 2015, 21, 2339; (f) Liu, J.; Li, Z.; Tong, P.; Xie, Z.; Zhang, Y.; Li, Y. J. Org. Chem. 2015, 80, 1632.
(a) Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu, G. J. Am. Chem. Soc. 2000, 43, 3799; (b) Wang, S.; Lin, J.; He, P.; Zuo, J.; Long, Y. Acta Chim. Sinica 2014, 72, 906 (王沈丰, 林建平, 何佩岚, 左建平, 龙亚秋, 化学学报, 2014, 72, 906.); (c) Enoki, Y.; Ishima, Y.; Tanaka, R.; Sato, K.; Kimachi, K.; Shirai, T.; Watanabe, H.; Chuang, V. T. G.; Fujiwara, Y.; Takeya, M.; Otagiri, M.; Maruyama, T. Plos One 2015, DOI:10.1371/journal.pone.0130248.
(a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993; (b) Šebesta, R.; Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2005, 1711; (c) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566; (d) Kuehne, M. E.; Muth, R. S. J. Org. Chem. 1991, 56, 2701; (e) Niphaki, M. J.; Turunen, B. J.; Georg, G. I. J. Org. Chem. 2010, 75, 6793.
For a selected review, see:Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, M. M. Curr. Org. Chem. 2005, 9, 141.
For selected examples, see: (a) Werner, W. Tetrahedron 1969, 25, 255; (b) Chen, B.; Huang, X.; Wang, J. Synthesis 1987, 482; (c) Madrid, P. B.; Sherrill, J.; Liou, A. P.; Weisman, J. L.; Derisi, J. L.; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.
Camps, R. Chem. Ber. 1899, 32, 3228.
doi: 10.1002/(ISSN)1099-0682
For selected examples, see: (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120.
For selected examples, see: (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.
(a) Tois, J.; Vahermo, M.; Koskinen, A. Tetrahedron Lett. 2005, 46, 735; (b) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609; (c) Ward, T. R.; Turunen, B. J.; Haack, T.; Neuenswander, B.; Shadrick, W.; Georg, G. I. Tetrahedron Lett. 2009, 50, 6494; (d) Mphahlele, M. J. J. Heterocycl. Chem. 2010, 47, 1; (e) Lange, J.; Bissember, A. C.; Banwell, M. G.; Cade, I. A.Aust. J. Chem. 2011, 64, 454.
For selected recent reviews, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (b) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323; (c) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473; (d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985; (f) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J.Angew. Chem., Int. Ed. 2015, 54, 15632; (g) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474; (h) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.
(a) Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.; Bureš, F.; Jiang, Z. RSC Adv. 2014, 4, 30062; (b) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443. (c) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708; (d) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.
See the supporting information for details.
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Naihong Wang , Longkang Zhang , Yejun Guan , Peng Wu , Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Xin Wang , Changzhao Chen , Qishen Wang , Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Xiao-Ming Chen , Lianhui Song , Jun Pan , Fei Zeng , Yi Xie , Wei Wei , Dong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Huaixiang Yang , Miao-Miao Li , Aijun Zhang , Jiefei Guo , Yongqi Yu , Wei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078