Citation: Shao Tianju, Jiang Zhiyong. Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones[J]. Acta Chimica Sinica, ;2017, 75(1): 70-73. doi: 10.6023/A16080407 shu

Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones

  • Corresponding author: Jiang Zhiyong, chmjzy@henu.edu.cn
  • Received Date: 13 August 2016

    Fund Project: and the Science and Technology Department of Henan Province 14IRTSTHN006and the Science and Technology Department of Henan Province 152300410057National Natural Science Foundation of China 21672052National Natural Science Foundation of China 21072044

Figures(2)

  • A visible-light-induced photocatalytic aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones has been developed. By utilizing dicyanopyrazine-derived chromophore (DPZ) as the photocatalyst, the dehydrogenation could provide 2, 3-dihydro-4-pyridones and 4-quinolones with satisfactory results (up to 75% yield). The current methodology presents a direct, sustainable and highly atom-economic approach to access these valuable N-containing heterocycles.
  • 加载中
    1. [1]

      For selected examples, see: (a) Kozikowski, A. P.; Park, P.-U. J. Org. Chem. 1990, 55, 4668; (b) Shintani, R.; Hayashi, T. Nat. Protoc. 2007, 2, 2903; (c) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433; (d) Ye, X. M.; Konradi, A. W.; Smith, J.; Xu, Y.-Z.; Dressen, D.; Garofalo, A. W.; Marugg, J.; Sham, H. L.; Truong, A. P.; Jagodzinski, J.; Pleiss, M.; Zhang, H.; Goldbach, E.; Sauer, J.-M.; Brigham, E.; Bova, M.; Basi, G. S. 2010, 20, 2195; (e) Gordeev, M. F.; Yuan, Z. Y. J. Med. Chem. 2014, 57, 4487.

    2. [2]

      For selected examples, see: (a) Huang, X.; Liu, Z.J. Org. Chem. 2002, 67, 6731; (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317; (c) Biswas, K.; Peterkin, T. A. N.; Bryan, M. C.; Arik, L.; Arik, L.; Lehto, S. G.; Sun, H.; Hsieh, F.-Y.; Xu, C.; Fremeau, R. T.; Allen, J. R. J. Med. Chem. 2011, 54, 7232; (d) Brouwer, C.; Jenko, K.; Zoghbi, S. S.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2014, 57, 6240; (e) Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem. Eur. J. 2015, 21, 2339; (f) Liu, J.; Li, Z.; Tong, P.; Xie, Z.; Zhang, Y.; Li, Y. J. Org. Chem. 2015, 80, 1632.

    3. [3]

      (a) Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu, G. J. Am. Chem. Soc. 2000, 43, 3799; (b) Wang, S.; Lin, J.; He, P.; Zuo, J.; Long, Y. Acta Chim. Sinica 2014, 72, 906 (王沈丰, 林建平, 何佩岚, 左建平, 龙亚秋, 化学学报, 2014, 72, 906.); (c) Enoki, Y.; Ishima, Y.; Tanaka, R.; Sato, K.; Kimachi, K.; Shirai, T.; Watanabe, H.; Chuang, V. T. G.; Fujiwara, Y.; Takeya, M.; Otagiri, M.; Maruyama, T. Plos One 2015, DOI:10.1371/journal.pone.0130248.

    4. [4]

      (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993; (b) Šebesta, R.; Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2005, 1711; (c) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566; (d) Kuehne, M. E.; Muth, R. S. J. Org. Chem. 1991, 56, 2701; (e) Niphaki, M. J.; Turunen, B. J.; Georg, G. I. J. Org. Chem. 2010, 75, 6793.

    5. [5]

      For a selected review, see:Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, M. M. Curr. Org. Chem. 2005, 9, 141.

    6. [6]

      For selected examples, see: (a) Werner, W. Tetrahedron 1969, 25, 255; (b) Chen, B.; Huang, X.; Wang, J. Synthesis 1987, 482; (c) Madrid, P. B.; Sherrill, J.; Liou, A. P.; Weisman, J. L.; Derisi, J. L.; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.

    7. [7]

      Camps, R. Chem. Ber. 1899, 32, 3228.  doi: 10.1002/(ISSN)1099-0682

    8. [8]

      For selected examples, see: (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120.

    9. [9]

      For selected examples, see: (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.

    10. [10]

      (a) Tois, J.; Vahermo, M.; Koskinen, A. Tetrahedron Lett. 2005, 46, 735; (b) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609; (c) Ward, T. R.; Turunen, B. J.; Haack, T.; Neuenswander, B.; Shadrick, W.; Georg, G. I. Tetrahedron Lett. 2009, 50, 6494; (d) Mphahlele, M. J. J. Heterocycl. Chem. 2010, 47, 1; (e) Lange, J.; Bissember, A. C.; Banwell, M. G.; Cade, I. A.Aust. J. Chem. 2011, 64, 454.

    11. [11]

      For selected recent reviews, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (b) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323; (c) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473; (d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985; (f) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J.Angew. Chem., Int. Ed. 2015, 54, 15632; (g) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474; (h) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.

    12. [12]

      (a) Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.; Bureš, F.; Jiang, Z. RSC Adv. 2014, 4, 30062; (b) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443. (c) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708; (d) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.

    13. [13]

      See the supporting information for details.

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    3. [3]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    4. [4]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    5. [5]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    8. [8]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    9. [9]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    10. [10]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    11. [11]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    12. [12]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    13. [13]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    14. [14]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    17. [17]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    18. [18]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    19. [19]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    20. [20]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

Metrics
  • PDF Downloads(15)
  • Abstract views(1143)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return