Citation: Shao Tianju, Jiang Zhiyong. Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones[J]. Acta Chimica Sinica, ;2017, 75(1): 70-73. doi: 10.6023/A16080407 shu

Visible Light Mediated Photocatalytic Aerobic Dehydrogenation: A General and Direct Approach to Access 2, 3-Dihydro-4-Pyridones and 4-Quinolones

  • Corresponding author: Jiang Zhiyong, chmjzy@henu.edu.cn
  • Received Date: 13 August 2016

    Fund Project: and the Science and Technology Department of Henan Province 14IRTSTHN006and the Science and Technology Department of Henan Province 152300410057National Natural Science Foundation of China 21672052National Natural Science Foundation of China 21072044

Figures(2)

  • A visible-light-induced photocatalytic aerobic dehydrogenation of 4-piperidones and 2, 3-dihydro-4-quinolones has been developed. By utilizing dicyanopyrazine-derived chromophore (DPZ) as the photocatalyst, the dehydrogenation could provide 2, 3-dihydro-4-pyridones and 4-quinolones with satisfactory results (up to 75% yield). The current methodology presents a direct, sustainable and highly atom-economic approach to access these valuable N-containing heterocycles.
  • 加载中
    1. [1]

      For selected examples, see: (a) Kozikowski, A. P.; Park, P.-U. J. Org. Chem. 1990, 55, 4668; (b) Shintani, R.; Hayashi, T. Nat. Protoc. 2007, 2, 2903; (c) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433; (d) Ye, X. M.; Konradi, A. W.; Smith, J.; Xu, Y.-Z.; Dressen, D.; Garofalo, A. W.; Marugg, J.; Sham, H. L.; Truong, A. P.; Jagodzinski, J.; Pleiss, M.; Zhang, H.; Goldbach, E.; Sauer, J.-M.; Brigham, E.; Bova, M.; Basi, G. S. 2010, 20, 2195; (e) Gordeev, M. F.; Yuan, Z. Y. J. Med. Chem. 2014, 57, 4487.

    2. [2]

      For selected examples, see: (a) Huang, X.; Liu, Z.J. Org. Chem. 2002, 67, 6731; (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317; (c) Biswas, K.; Peterkin, T. A. N.; Bryan, M. C.; Arik, L.; Arik, L.; Lehto, S. G.; Sun, H.; Hsieh, F.-Y.; Xu, C.; Fremeau, R. T.; Allen, J. R. J. Med. Chem. 2011, 54, 7232; (d) Brouwer, C.; Jenko, K.; Zoghbi, S. S.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2014, 57, 6240; (e) Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem. Eur. J. 2015, 21, 2339; (f) Liu, J.; Li, Z.; Tong, P.; Xie, Z.; Zhang, Y.; Li, Y. J. Org. Chem. 2015, 80, 1632.

    3. [3]

      (a) Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu, G. J. Am. Chem. Soc. 2000, 43, 3799; (b) Wang, S.; Lin, J.; He, P.; Zuo, J.; Long, Y. Acta Chim. Sinica 2014, 72, 906 (王沈丰, 林建平, 何佩岚, 左建平, 龙亚秋, 化学学报, 2014, 72, 906.); (c) Enoki, Y.; Ishima, Y.; Tanaka, R.; Sato, K.; Kimachi, K.; Shirai, T.; Watanabe, H.; Chuang, V. T. G.; Fujiwara, Y.; Takeya, M.; Otagiri, M.; Maruyama, T. Plos One 2015, DOI:10.1371/journal.pone.0130248.

    4. [4]

      (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993; (b) Šebesta, R.; Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2005, 1711; (c) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566; (d) Kuehne, M. E.; Muth, R. S. J. Org. Chem. 1991, 56, 2701; (e) Niphaki, M. J.; Turunen, B. J.; Georg, G. I. J. Org. Chem. 2010, 75, 6793.

    5. [5]

      For a selected review, see:Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, M. M. Curr. Org. Chem. 2005, 9, 141.

    6. [6]

      For selected examples, see: (a) Werner, W. Tetrahedron 1969, 25, 255; (b) Chen, B.; Huang, X.; Wang, J. Synthesis 1987, 482; (c) Madrid, P. B.; Sherrill, J.; Liou, A. P.; Weisman, J. L.; Derisi, J. L.; Guy, R. K. Bioorg. Med. Chem. Lett. 2005, 15, 1015.

    7. [7]

      Camps, R. Chem. Ber. 1899, 32, 3228.  doi: 10.1002/(ISSN)1099-0682

    8. [8]

      For selected examples, see: (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120.

    9. [9]

      For selected examples, see: (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.

    10. [10]

      (a) Tois, J.; Vahermo, M.; Koskinen, A. Tetrahedron Lett. 2005, 46, 735; (b) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609; (c) Ward, T. R.; Turunen, B. J.; Haack, T.; Neuenswander, B.; Shadrick, W.; Georg, G. I. Tetrahedron Lett. 2009, 50, 6494; (d) Mphahlele, M. J. J. Heterocycl. Chem. 2010, 47, 1; (e) Lange, J.; Bissember, A. C.; Banwell, M. G.; Cade, I. A.Aust. J. Chem. 2011, 64, 454.

    11. [11]

      For selected recent reviews, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (b) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323; (c) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473; (d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985; (f) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J.Angew. Chem., Int. Ed. 2015, 54, 15632; (g) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474; (h) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.

    12. [12]

      (a) Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.; Bureš, F.; Jiang, Z. RSC Adv. 2014, 4, 30062; (b) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443. (c) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708; (d) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.

    13. [13]

      See the supporting information for details.

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    3. [3]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    4. [4]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    5. [5]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    6. [6]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    7. [7]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    8. [8]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    9. [9]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    10. [10]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    11. [11]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    12. [12]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    13. [13]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    14. [14]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    15. [15]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    16. [16]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    17. [17]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    18. [18]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    19. [19]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    20. [20]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

Metrics
  • PDF Downloads(18)
  • Abstract views(1237)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return