Citation: Ren Tong, Zhuang Quanchao, Hao Yuwan, Cui Yongli. Influence of Electrochemical Performance of Lithium Ion Batteries with the Adding of LiF and LiCl[J]. Acta Chimica Sinica, ;2016, 74(10): 833-838. doi: 10.6023/A16080394
-
In the past few decades, lithium hexafluorophosphate (LiPF6) is the most widely employed ionic component in organic electrolyte solutions for commercial lithium ion battery, which is manufactured using PCl5, LiF and HF as raw materials via the HF solvent method in the large scale production, and then it commonly contains LiF and LiCl impurities besides water and acid. However, the influence of LiF and LiCl on the performance of lithium ion battery is still not clear. Thus, in this paper, the influence of LiF and LiCl on the electrochemical performance of graphite electrode was investigated using charge-discharge test and cyclic voltammetry (CV) combining with scanning electron microscope (SEM) and electrochemical impedance spectrum (EIS). Charge-discharge test results showed that the electrochemical performance of graphite electrode such as reversible capacity and cycling stability were significantly improved in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF. The initial charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF is 331.0 mAh/g, which is higher than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte (307.9 mAh/g). After 65 charge-discharge cycles, the charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF is 340.1 mAh/g, which is also higher than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte (297.0 mAh/g). However, although the first charging capacity of graphite electrode was enhanced in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl, the charge-discharge cycling stability was serious deteriorated. The initial charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl is 334.2 mAh/g, yet after 65 charge-discharge cycles, the charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl is 251.2 mAh/g. CV results showed that the influence of LiF and LiCl on the decomposition process of EC in electrolyte is small. SEM and EIS results stated that the SEI film which was formed on the graphite electrode is thinner and has a smaller resistance in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte. Thus the reversible cycle capacity of graphite electrode was increased and its cycle stability was improved. Nevertheless the SEI film which was formed on the graphite electrode is thicker and its resistance is higher in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte, which leads to the deterioration of electrochemical performance of graphite electrode.
-
Keywords:
- lithium ion battery,
- graphite electrode,
- LiPF6,
- LiF,
- LiCl
-
-
[1]
[1] Xu, K. Chem. Rev. 2004, 104, 4303.
-
[2]
[2] Zhuang, Q.-C.; Wu, S.; Liu, W.-Y.; Lu, Z.-D. Chin. Batt. Ind. 2005, 10, 169(in Chinese). (庄全超, 武山, 刘文元, 陆兆达, 电池工业, 2005, 10, 169.)
-
[3]
[3] Li, J.; Tian, L.-L.; Zhao, F.-L.; Zhuang, Q.-C. Appl. Chem. Ind. 2011, 40, 524(in Chinese). (李佳, 田雷雷, 赵封林, 庄全超, 应用化工, 2011, 40, 524.)
-
[4]
[4] Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y. J. Electrochem. Soc. 1996, 143, 3809.
-
[5]
[5] Aurbach, D.; Weissman, I.; Zaban, A.; Dan, P. Electrochim. Acta 1999, 45, 1135.
-
[6]
[6] Aurbach, D.; Schechter, A. Electrochim. Acta 2001, 46, 2395.
-
[7]
[7] Naji, A.; Ghanbaja, J.; Humbert, B.; Willmann, P.; Billaud, D. J. Power Sources 1996, 63, 33.
-
[8]
[8] Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41.
-
[9]
[9] Du, L.-L.; Zhuang, Q.-C.; Wei, T.; Shi, Y.-L.; Qiang, Y.-H.; Sun, S.-G. Acta Chim. Sinica 2011, 69, 2641(in Chinese). (杜莉莉, 庄全超, 魏涛, 史月丽, 强颖怀, 孙世刚, 化学学报, 2011, 69, 2641.)
-
[10]
[10] Wei, T.; Zhuang, Q.-C.; Wu, C.; Cui, Y.-L.; Fang, L.; Sun, S.-G. Acta Chim. Sinica 2010, 68, 1481(in Chinese). (魏涛, 庄全超, 吴超, 崔永丽, 方亮, 孙世刚, 化学学报, 2010, 68, 1481.)
-
[11]
[11] Chang, Y.-C.; Sohn, H.-J. J. Electrochem. Soc. 2000, 147, 50.
-
[12]
[12] Zhuang, Q.-C.; Chen, Z.-F.; Dong, Q.-F.; Jiang, Y.-X.; Zhou, Z.-Y.; Sun, S.-G. Chem. J. Chin. Univ. 2005, 26, 2073(in Chinese). (庄全超, 陈作锋, 董全峰, 姜艳霞, 周志有, 孙世刚, 高等学校化学学报, 2005, 26, 2073.)
-
[13]
[13] Levi, M.-D.; Aurbach, D. J. Phys. Chem. B 1997, 101, 4630.
-
[14]
[14] Levi, M.-D.; Aurbach, D. J. Power Sources 2005, 146, 727.
-
[15]
[15] Deng, X.; Xie, K.; Li, L.; Zhou, W.; Sunarso, J.; Shao, Z. Carbon 2016, 107, 67.
-
[16]
[16] Deng, X.; Zhao, B.; Zhu, L.; Shao, Z.-P. Carbon 2015, 93, 48.
-
[17]
[17] Zhang, S.-S.; Xu, K.; Jow, T.-R. Electrochim. Acta 2006, 51, 1636.
-
[18]
[18] Zhang, S.; Shi, P. Electrochim. Acta 2004, 49, 1475.
-
[19]
[19] Xu, S.-D.; Zhuang, Q.-C.; Tian, L.-L.; Qin, Y.-P.; Fang, L.; Sun, S.-G. J. Phys. Chem. C 2011, 115, 9210.
-
[20]
[20] Zhuang, Q.-C.; Wei, T.; Wei, G.-Z.; Dong, Q.-F.; Sun, S.-G. Acta Chim. Sinica 2009, 67, 2184(in Chinese). (庄全超, 魏涛, 魏国祯, 董全峰, 孙世刚, 化学学报, 2009, 67, 2184.)
-
[21]
[21] Wang, C.-S.; Kakwan, I.; John Appleby, A.; Little, F.-E. J. Electroanal. Chem. 2000, 489, 55.
-
[22]
[22] Wang, C.-S.; Appleby, A.-J.; Little, F.-E. J. Electroanal. Chem. 2001, 497, 33.
-
[1]
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[3]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[4]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[7]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[8]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[9]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[13]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[14]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[15]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[16]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[17]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[18]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[19]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[20]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(533)
- HTML views(75)