Citation: Ren Tong, Zhuang Quanchao, Hao Yuwan, Cui Yongli. Influence of Electrochemical Performance of Lithium Ion Batteries with the Adding of LiF and LiCl[J]. Acta Chimica Sinica, ;2016, 74(10): 833-838. doi: 10.6023/A16080394 shu

Influence of Electrochemical Performance of Lithium Ion Batteries with the Adding of LiF and LiCl

  • Corresponding author: Zhuang Quanchao, 
  • Received Date: 5 August 2016

  • In the past few decades, lithium hexafluorophosphate (LiPF6) is the most widely employed ionic component in organic electrolyte solutions for commercial lithium ion battery, which is manufactured using PCl5, LiF and HF as raw materials via the HF solvent method in the large scale production, and then it commonly contains LiF and LiCl impurities besides water and acid. However, the influence of LiF and LiCl on the performance of lithium ion battery is still not clear. Thus, in this paper, the influence of LiF and LiCl on the electrochemical performance of graphite electrode was investigated using charge-discharge test and cyclic voltammetry (CV) combining with scanning electron microscope (SEM) and electrochemical impedance spectrum (EIS). Charge-discharge test results showed that the electrochemical performance of graphite electrode such as reversible capacity and cycling stability were significantly improved in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF. The initial charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF is 331.0 mAh/g, which is higher than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte (307.9 mAh/g). After 65 charge-discharge cycles, the charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF is 340.1 mAh/g, which is also higher than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte (297.0 mAh/g). However, although the first charging capacity of graphite electrode was enhanced in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl, the charge-discharge cycling stability was serious deteriorated. The initial charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl is 334.2 mAh/g, yet after 65 charge-discharge cycles, the charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl is 251.2 mAh/g. CV results showed that the influence of LiF and LiCl on the decomposition process of EC in electrolyte is small. SEM and EIS results stated that the SEI film which was formed on the graphite electrode is thinner and has a smaller resistance in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte. Thus the reversible cycle capacity of graphite electrode was increased and its cycle stability was improved. Nevertheless the SEI film which was formed on the graphite electrode is thicker and its resistance is higher in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte, which leads to the deterioration of electrochemical performance of graphite electrode.
  • 加载中
    1. [1]

      [1] Xu, K. Chem. Rev. 2004, 104, 4303.

    2. [2]

      [2] Zhuang, Q.-C.; Wu, S.; Liu, W.-Y.; Lu, Z.-D. Chin. Batt. Ind. 2005, 10, 169(in Chinese). (庄全超, 武山, 刘文元, 陆兆达, 电池工业, 2005, 10, 169.)

    3. [3]

      [3] Li, J.; Tian, L.-L.; Zhao, F.-L.; Zhuang, Q.-C. Appl. Chem. Ind. 2011, 40, 524(in Chinese). (李佳, 田雷雷, 赵封林, 庄全超, 应用化工, 2011, 40, 524.)

    4. [4]

      [4] Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y. J. Electrochem. Soc. 1996, 143, 3809.

    5. [5]

      [5] Aurbach, D.; Weissman, I.; Zaban, A.; Dan, P. Electrochim. Acta 1999, 45, 1135.

    6. [6]

      [6] Aurbach, D.; Schechter, A. Electrochim. Acta 2001, 46, 2395.

    7. [7]

      [7] Naji, A.; Ghanbaja, J.; Humbert, B.; Willmann, P.; Billaud, D. J. Power Sources 1996, 63, 33.

    8. [8]

      [8] Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41.

    9. [9]

      [9] Du, L.-L.; Zhuang, Q.-C.; Wei, T.; Shi, Y.-L.; Qiang, Y.-H.; Sun, S.-G. Acta Chim. Sinica 2011, 69, 2641(in Chinese). (杜莉莉, 庄全超, 魏涛, 史月丽, 强颖怀, 孙世刚, 化学学报, 2011, 69, 2641.)

    10. [10]

      [10] Wei, T.; Zhuang, Q.-C.; Wu, C.; Cui, Y.-L.; Fang, L.; Sun, S.-G. Acta Chim. Sinica 2010, 68, 1481(in Chinese). (魏涛, 庄全超, 吴超, 崔永丽, 方亮, 孙世刚, 化学学报, 2010, 68, 1481.)

    11. [11]

      [11] Chang, Y.-C.; Sohn, H.-J. J. Electrochem. Soc. 2000, 147, 50.

    12. [12]

      [12] Zhuang, Q.-C.; Chen, Z.-F.; Dong, Q.-F.; Jiang, Y.-X.; Zhou, Z.-Y.; Sun, S.-G. Chem. J. Chin. Univ. 2005, 26, 2073(in Chinese). (庄全超, 陈作锋, 董全峰, 姜艳霞, 周志有, 孙世刚, 高等学校化学学报, 2005, 26, 2073.)

    13. [13]

      [13] Levi, M.-D.; Aurbach, D. J. Phys. Chem. B 1997, 101, 4630.

    14. [14]

      [14] Levi, M.-D.; Aurbach, D. J. Power Sources 2005, 146, 727.

    15. [15]

      [15] Deng, X.; Xie, K.; Li, L.; Zhou, W.; Sunarso, J.; Shao, Z. Carbon 2016, 107, 67.

    16. [16]

      [16] Deng, X.; Zhao, B.; Zhu, L.; Shao, Z.-P. Carbon 2015, 93, 48.

    17. [17]

      [17] Zhang, S.-S.; Xu, K.; Jow, T.-R. Electrochim. Acta 2006, 51, 1636.

    18. [18]

      [18] Zhang, S.; Shi, P. Electrochim. Acta 2004, 49, 1475.

    19. [19]

      [19] Xu, S.-D.; Zhuang, Q.-C.; Tian, L.-L.; Qin, Y.-P.; Fang, L.; Sun, S.-G. J. Phys. Chem. C 2011, 115, 9210.

    20. [20]

      [20] Zhuang, Q.-C.; Wei, T.; Wei, G.-Z.; Dong, Q.-F.; Sun, S.-G. Acta Chim. Sinica 2009, 67, 2184(in Chinese). (庄全超, 魏涛, 魏国祯, 董全峰, 孙世刚, 化学学报, 2009, 67, 2184.)

    21. [21]

      [21] Wang, C.-S.; Kakwan, I.; John Appleby, A.; Little, F.-E. J. Electroanal. Chem. 2000, 489, 55.

    22. [22]

      [22] Wang, C.-S.; Appleby, A.-J.; Little, F.-E. J. Electroanal. Chem. 2001, 497, 33.

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(2)
  • Abstract views(532)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return