Citation: Cui Bin-Bin, Tang Jian-Hong, Zhong Yu-Wu. Resistive Memory Materials Based on Transition-Metal Complexes[J]. Acta Chimica Sinica, ;2016, 74(9): 726-733. doi: 10.6023/A16080384 shu

Resistive Memory Materials Based on Transition-Metal Complexes

  • Corresponding author: Zhong Yu-Wu, zhongyuwu@iccas.ac.cn
  • Received Date: 2 August 2016

    Fund Project: the National Natural Science Foundation of China 21501183the Ministry of Science and Technology of China 2012YQ120060the National Natural Science Foundation of China 21472196the Strategic Priority Research Program of the Chinese Academy of Sciences XDB 12010400the National Natural Science Foundation of China 21521062the National Natural Science Foundation of China 21271176

Figures(14)

  • A resistive memory operates as an electrical switch between high and low conductivity states (or multistates) in response to an external electric field. Due to the high capacity, high flexibility, good scalability, low cost, and low power consumption, resistive memory is promising for the next-generation high-density data storage. In addition to inorganic metal oxides, carbon nanomaterials, organic small molecular and polymeric semiconductor materials, transition-metal complexes have recently received much attention as active materials for resistive memory. In this contribution, the applications of transition-metal complexes in resistive memory reported to date are summarized and discussed, mainly including group VⅢ [Fe(Ⅱ), Ru(Ⅱ), Co(Ⅲ), Rh(Ⅲ), Ir(Ⅲ), and Pt(Ⅱ) complexes], group IB and ⅡB [Cu(Ⅱ), Au(Ⅲ), and Zn(Ⅱ) complexes], and lanthanide complexes [mainly Eu(Ⅲ) complexes]. The memory behavior and mechanism of these materials will be discussed. Transition-metal complexes often possess well-defined and reversible redox processes. The frontier energy levels and gaps can be easily modulated by changing the structures of ligands and metal species, which is beneficial for generating electrical bistates or multistates when they are used in resistive memory devices. These features make transition-metal complexes potentially useful as memory materials in practical applications.
  • 加载中
    1. [1]

      Chua L. O. IEEE Trans. Circuit Theory, 1971, 18:507.  doi: 10.1109/TCT.1971.1083337

    2. [2]

      Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. Nature, 2008, 453:80. (b) Ouyang J., Chu C.-W., Szmanda C. R., Ma L., Yang Y. Nat. Mater., 2004, 3:918. (c) Moller S., Perlov C., Jackson W., Taussig C., Forrest S. R. Nature, 2003, 426:166. (d) Waser R., Aono M. Nat. Mater., 2007, 6:833.

    3. [3]

      Ling Q. D., Liaw D. J., Zhu C., Chan D. S. H., Kang E. T., Neoh K. G. Prog. Polym. Sci., 2008, 33:917. (b) Chen Y., Liu G., Wang C., Zhang W., Li R.-W., Wang L. Mater. Horiz., 2014, 1:489. (c) Liu C.-L., Chen W.-C. Polym. Chem., 2011, 2:2169.

    4. [4]

      Lin W.-P., Liu S.-J., Gong T., Zhao Q., Huang W. Adv. Mater., 2014, 26:570.  doi: 10.1002/adma.v26.4

    5. [5]

      Zhu X., Su W., Liu Y., Hu B., Pan L., Lu W., Zhang J., Li R.-W. Adv. Mater., 2012, 24:3941. (b) Liang L., Li K., Xiao C., Fan S., Liu J., Zhang W., Xu W., Tong W., Liao J., Zhou Y., Ye B., Xie Y. J. Am. Chem. Soc., 2015, 137:3102.

    6. [6]

      Wang X., Xie W., Xu J.-B. Adv. Mater., 2014, 26:5496.  doi: 10.1002/adma.201306041

    7. [7]

      Ma Y., Cao X., Li G., Wen Y., Yang Y., Wang J., Song Y. Adv. Funct. Mater., 2010, 20:803. (b) Li G., Zheng K., Wang C., Leck K. S., Hu F., Sun X. W., Zhang Q. ACS Appl. Mater. Interfaces, 2013, 5:6458. (c) Wu H.-C., Zhang J., Bo Z., Chen W.-C. Chem. Commun., 2015, 51:14179. (d) Su Z., Zhuang H., Liu H., Li H., Xu Q., Lu J., Wang L. J. Mater. Chem. C, 2014, 2:5673.

    8. [8]

      Ko Y.-G., Kim D. M., Kim K., Jung S., Wi D., Michinobu T., Ree M. ACS Appl. Mater. Interfaces, 2014, 6:8415. (b) Wu X., Wu Y., Zhang C., Niu H., Lei L., Qin C., Wang C., Bai X., Wang W. RSC Adv., 2015, 5:58843. (c) Lin L.-C., Ye H.-J., Chen C.-J., Tsai C.-L., Liou G.-S. Chem. Commun., 2014, 50:13917. (d) Zhou Z., Qu L., Yang T., Wen J., Zhang Y., Chi Z., Liu S., Chen X., Xu J. RSC Adv., 2016, 6:52798.

    9. [9]

      Li H., Xu Q., Li N., Sun R., Ge J., Lu J., Gu H., Yan F. J. Am. Chem. Soc., 2010, 132:5542. (b) Gu P.-Y., Zhou F., Gao J., Li G., Wang C., Xu Q.-F., Zhang Q., Lu J.-M. J. Am. Chem. Soc., 2013, 135:14086. (c) Gu Q.-F., He J.-H., Chen D.-Y., Dong H.-L., Li Y.-Y., Li H., Xu Q.-F., Lu J.-M. Adv. Mater., 2015, 27:5968. (d) Poon C.-T., Wu D., Lam W. H., Yam V. W.-W. Angew. Chem. Int. Ed., 2015, 54:10569.

    10. [10]

      Zhong Y.-W., Gong Z.-L., Shao J.-Y., Yao J. Coord. Chem. Rev., 2016, 312:22. (b) Gong Z.-L., Shao J.-Y., Zhong Y.-W. J. Electrochem., 2016, 22:244 (龚忠亮, 邵将洋, 钟羽武, 电化学, 2016, 22, 244). (c) Kong D.-D., Xue L.-S., Jang R., Liu B., Meng X.-G., Jin S., Qu Y.-P., Hao X., Liu S.-H. Chem. Eur. J., 2015, 21:9895. (d) Sarkar B., Schweinfurth D., Deibel D., Weisser F. Coord. Chem. Rev., 2015, 293:250.

    11. [11]

      Zhong Y.-W., Yao C.-J., Nie H.-J. Coord. Chem. Rev., 2013, 257:1357. (b) Zhang K. Y., Liu S., Zhao Q., Huang W. Coord. Chem. Rev., 2016, 319:180. (c) Zhao J., Xu K., Yang W., Wang Z., Zhong F. Chem. Soc. Rev., 2015, 44:8904. (d) Gong Z.-L., Zhong Y.-W. Sci. China Chem., 2015, 58:1444. (e) Wang D., Dong H., Zhang X., Wu Y., Shen S., Jiao B., Wu Z., Gao M., Wang G. Sci. China Chem., 2015, 58:658. (f) Cui C., Zhang Y., Choy W. C. H., Li H., Wong W.-Y. Sci. China Chem., 2015, 58:347.

    12. [12]

      Lu J.-M., Xu Q.-F., Li H., Li N.-J., He J.-H., Chen D.-Y., Wang L.-H. Chin. Polym. Bull. 2015, (10), 25 (路健美, 徐庆锋, 李华, 李娜君, 贺竞辉, 陈东赟, 王丽华, 高分子通报, 2015, (10), 25). (b) Wang C., Gu P., Hu B., Zhang Q. J. Mater. Chem. C, 2015, 3:10055.

    13. [13]

      Li C., Fan W., Straus D. A., Lei B., Asano S., Zhang D., Han J., Meyyappan M., Zhou C. J. Am. Chem. Soc., 2004, 126:7750. (b) Seo K., Konchenko A. V., Lee J., Bang G. S., Lee H. J. Am. Chem. Soc., 2008, 130:2553.

    14. [14]

      Choi T. L., Lee K. H., Joo W. J., Lee S., Lee T. W., Chae M. Y. J. Am. Chem. Soc., 2007, 129:9842.  doi: 10.1021/ja0717459

    15. [15]

      Xiang J., Wang T.-K., Zhao Q., Huang W., Ho C.-L., Wong W.-Y. J. Mater. Chem. C, 2016, 4:921.  doi: 10.1039/C5TC03042K

    16. [16]

      Basudev P., Samir D. Chem. Mater., 2008, 20:1209.  doi: 10.1021/cm7034135

    17. [17]

      Cui B.-B., Mao Z., Chen Y., Zhong Y.-W., Yu G., Zhan C., Yao J. Chem. Sci., 2015, 6:1308.  doi: 10.1039/C4SC03345K

    18. [18]

      Bandyopadhyay A., Sahu S., Higuchi M. J. Am. Chem. Soc., 2011, 133:1168.  doi: 10.1021/ja106945v

    19. [19]

      Paul N. D., Rana U., Goswami S., Mondal T. K., Goswami S. J. Am. Chem. Soc., 2012, 134:6520. (b) Goswami S., Sengupta D., Paul N. D., Mondal T. K., Goswami S. Chem. Eur. J., 2014, 20:6103.

    20. [20]

      Wang F., Tao Y., Huang W. Acta Chim. Sinica, 2015, 73:9 (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9). (b) Liu C., Mao L., Jia H., Liao Z., Wang H., Mi B., Gao Z. Sci. China Chem., 2015, 58:640.

    21. [21]

      Liu S.-J., Lin Z.-H., Zhao Q., Ma Y., Shi H.-F., Yi M.-D., Ling Q.-D., Fan Q.-L., Zhu C.-X., Kang E.-T., Huang W. Adv. Funct. Mater., 2011, 21:979. (b) Liu S.-J., Wang P., Zhao Q., Yang H.-Y., Wong J., Sun H.-B., Dong X.-C., Lin W.-P., Huang W. Adv. Mater., 2012, 24:2901. (c) Liu S.-J., Lin W.-P., Yi M.-D., Xu W.-J., Tang C., Zhao Q., Ye S.-H., Liu X.-M., Huang W. J. Mater. Chem., 2012, 22:22964.

    22. [22]

      Wang P., Liu S.-J., Lin Z.-H., Dong X.-C., Zhao Q., Lin W.-P., Yi M.-D., Ye S.-H., Zhu C.-X., Huang W. J. Mater. Chem., 2012, 22:9576.  doi: 10.1039/c2jm16287c

    23. [23]

      Choi S., Hong S.-H., Cho S. H., Park S., Park S.-M., Kim O., Ree M. Adv. Mater., 2008, 20:1766.  doi: 10.1002/(ISSN)1521-4095

    24. [24]

      Ma Y., Chen H.-X., Zhou F., Li H., Dong H., Li Y.-Y., Hu Z.-J., Xu Q.-F., Lu J.-M. Nanoscale, 2015, 7:7659.  doi: 10.1039/C5NR00871A

    25. [25]

      Au V. K.-M.; Wu D., Yam V. W.-W. J. Am. Chem. Soc., 2015, 137:4654. (b) Hong E. Y.-H.; Poon C.-T., Yam V. W.-W. J. Am. Chem. Soc., 2016, 138:6368.

    26. [26]

      Lin J., Zheng M., Chen J., Gao X., Ma D. Inorg. Chem., 2007, 46:341.  doi: 10.1021/ic061851w

    27. [27]

      Xu G., Li J., Chen Z. Acta Chim. Sinica, 2014, 72:667 (徐广涛, 李佳, 陈忠宁, 化学学报, 2014, 72, 667). (b) Ren M., Zheng L.-M. Acta Chim. Sinica, 2015, 73:1091 (任旻, 郑丽敏, 化学学报, 2015, 73, 1091). (c) Nie K., Liu C., Zhang Y., Yao Y. Sci. China Chem., 2015, 58:1451. (d) Peng Y., Li Z., Liu Z., Yuan Q. Sci. China Chem., 2015, 58:1159.

    28. [28]

      Ling Q., Song Y., Ding S. J., Zhu C., Chan D. S. H., Kwong D.-L., Kang E.-T., Neoh K.-G. Adv. Mater., 2005, 17:455. (b) Ling Q.-D., Wang W., Song Y., Zhu C.-X., Chan D. S. H., Kang E.-T., Neoh K.-G. J. Phys. Chem. B, 2006, 110:23995.

    29. [29]

      Tan Y. P., Song Y., Teo E. Y. H., Ling Q. D., Lim S. L., Lo P. G. Q., Chan D. S. H., Kang E.-T., Zhu C. J. Electrochem. Soc. 2008, 155, H17. (b) Wang B., Fang J., Li B., You H., Ma D., Hong Z., Li W., Su Z. Thin Solid Films, 2008, 516:3123.

    30. [30]

      Fang J., You H., Chen J., Lin J., Ma D. Inorg. Chem., 2006, 45:3701.  doi: 10.1021/ic051783y

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(0)
  • Abstract views(1143)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return