Citation: Yu Yun, Yang Jie, Ren Zichun, Xie Guohua, Li Qianqian, Li Zhen. Synthesis of Solution Processable Blue AIEgens and the Device Performance[J]. Acta Chimica Sinica, ;2016, 74(11): 865-870. doi: 10.6023/A16070372 shu

Synthesis of Solution Processable Blue AIEgens and the Device Performance

  • Corresponding author: Xie Guohua, xgh-008@163.com Li Zhen, lizhen@whu.edu.cn; lichemlab@163.com
  • Yun Yu and Jie Yang contributed equally to this paper
  • Received Date: 28 July 2016

    Fund Project: and the National Natural Science Foundation of China 51573140and the National Natural Science Foundation of China 21325416National Fundamental Key Research Program 2013CB834701and the National Natural Science Foundation of China 6715751469

Figures(3)

  • By utilizing the special sp3 hybridization of tetraphenylmethane to break and control the intramolecular conjugation, and using silicon atom to replace the carbon atom in tetraphenylsilane, six molecules of C-4pTPE, C-4mTPE, C-4triPE, Si-4pTPE, Si-4mTPE, and Si-4triPE, were designed and successfully obtained, with tetraphenylethylene (TPE) and triphenylethylene (triPE) introduced to the core of tetraphenylmethane or tetraphenylsilane as rotors. These six molecules all possess typical aggregation induced emission (AIE) properties, they are all nearly nonemissive when readily dissolved in pure THF, but with the water fraction increasing, the PL intensity gradually increased. Due to their good AIE properties and thermal stability, they were fabricated in OLED devices by the solution process conveniently, with the maximum luminance (Lmax), maximum current efficiency (ηC, max), maximum power efficiency (ηp, max) and maximum external quantum efficiency (ηext, max) at 1730 cd·m-2, 2.21 cd·A-1, 0.77 lm·W-1 and 1.01%, respectively.
  • 加载中
    1. [1]

      Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.  doi: 10.1063/1.98799

    2. [2]

      Ma, Y. G.; Zhang, H.; Shen, J. C.; Che, C. Synth. Met. 1998, 94, 245.  doi: 10.1016/S0379-6779(97)04166-0

    3. [3]

      D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585.  doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Li, J. Y.; Ma, C. W.; Tang, J. X.; Lee, C. S.; Lee, S. T. Chem. Mater. 2005, 17, 615.  doi: 10.1021/cm048337d

    5. [5]

      Li, J.; Liu, D.; Li, Y.; Lee, C. S.; Kwong, H.; Lee, S. Chem. Mater. 2005, 17, 1208.  doi: 10.1021/cm034731k

    6. [6]

      Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.  doi: 10.1063/1.105039

    7. [7]

      Wu, W. S.; Inbasekaran, M.; Hudack, M.; Welsh, D.; Yu, W. L.; Cheng, Y.; Wang, C.; Kram, S.; Tacey, M.; Bernius, M.; Fletcher, R.; Kiszka, K.; Munger, S.; O'Brien, J. Microelectron. J. 2004, 35, 343.  doi: 10.1016/j.mejo.2003.07.001

    8. [8]

      Bernius, M. T.; Inbasekaran, M.; O'Brien, J. J.; Wu, W. Adv. Mater. 2000, 12, 1737.  doi: 10.1002/(ISSN)1521-4095

    9. [9]

      Förster, T.; Kasper, K. Z. Phys. Chem.(Muenchen, Ger), 1954, 1, 275; (b) Jakubiak, R.; Collision, C. J.; Wan, W. C.; Rothberg, L. J. Phys. Chem. A 1999, 103, 2394. (c) Lemmer, U.; Heun, S.; Mahrt, R. F.; Schert, U.; Hopmeier, M.; Siegner, U.; Göbel, E. O.; Müllen, K.; Bassler, H. Chem. Phys. Lett. 1995, 240, 373.

    10. [10]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740; (b) Qian, L. J.; Tong, B.; Zhi, J. G.; Yang, F.; Shen, J. B.; Shi, J. B.; Dong, Y. P. Acta Chim. Sinica 2008, 66, 1134(in Chinese). (钱立军, 佟斌, 支俊格, 杨帆, 申进波, 石建兵, 董宇平, 化学学报, 2008, 66, 1134.); (c) Xun, Z. Q.; Tang, H. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Zhang, X. H.; Li, Y. Acta Chim. Sinica 2015, 73, 819(in Chinese). (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.)

    11. [11]

      Yang, J.; Huang, J.; Li, Q.; Li, Z. J. Mater. Chem. C 2016, 4, 2663. (b) Li, Z. Sci. China Chem. 2015, 58, 969. (c) Li, Q.; Li, Z. Sci. China Chem. 2015, 58, 1800. (d) Zhang, X.; Zhang, X.; Yang, B.; Wei, Y. Chin. J. Polym. Sci. 2014, 32, 1479. (e) Wang, R.; Yuan, W.; Zhu, X. Chin. J. Polym. Sci. 2015, 33, 680. (f) Wu, W.; Tang, R.; Li, Q.; Li, Z. Chem. Soc. Rev. 2015, 44, 3997.

    12. [12]

      Tung, Y. J.; Nago, T.; Hack, M.; Brown, J.; Koide, N.; Nagara, Y.; Kato, Y.; Ito, H. Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp 2004, 35, 48. (b) Lee, M. T.; Liao, C. H.; Tsai, C. H.; Chen, C. H. Adv. Mater. 2005, 17, 2493. (c) Lee, S. J.; Park, J. S.; Yoon, K. J.; Kim, Y. I.; Jin, S. H.; Kang, S. K.; Gal, Y. S.; Kang, S.; Lee, J. Y.; Kang, J. W.; Lee, S. H.; Park, H. D.; Kim, J. J. Adv. Funct. Mater. 2008, 18, 3922. (d) Lai, M. Y.; Chen, C. H.; Huang, W. S.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Tsai, M. H.; Wu, C. C. Angew. Chem., Int. Ed. 2008, 47, 581. (e) Chen, C. H.; Huang, W. S.; Lai, M. Y.; Tsao, W. C.; Lin, J. T.; Wu, Y. H.; Ke, T. H.; Chen, L. Y.; Wu, C. C. Adv. Funct. Mater. 2009, 19, 2661. (f) Zheng, C. J.; Wang, J.; Ye, J.; Lo, M. F.; Liu, X. K.; Fung, M. K.; Zhang, X. H.; Lee, C. S. Adv. Mater. 2013, 25, 2205.

    13. [13]

      Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467. (b) Gather, M. C.; Köhnen, A.; Meerholz, K. Adv. Mater. 2011, 23, 233.

    14. [14]

      Kang, D. M.; Kang, J. W.; Park, J. W.; Jung, S. O.; Lee, S. H.; Park, H. D.; Kim, Y. H.; Shun, S. C.; Kim, J. J.; Kwon, S. K. Adv. Mater. 2008, 20, 2003. (b) Park, T. J.; Jeon, W. S.; Park, J. J.; Kim, S. Y.; Lee, Y. K.; Jang, J.; Kwon, J. H.; Pode, R. Appl. Phys. Lett. 2008, 92, 113308.

    15. [15]

      Yang, J.; Huang, J.; Sun, N.; Peng, Q.; Li, Q. Q.; Ma, D. G.; Li, Z. Chem. Eur. J. 2015, 21, 1. (b) Huang, J.; Tang, R. L.; Zhang, T.; Li, Q. Q.; Yu, G.; Xie, S. Y.; Liu, Y. Q.; Ye, S. H.; Qin, J. G.; Li, Z. Chem. Eur. J. 2014, 20, 5317. (c) Huang, J.; Sun, N.; Dong, Y.; Tang, R.; Lu, P.; Cai, P.; Li, Q.; Ma, D.; Qin, J.; Li, Z. Adv. Funct. Mater. 2013, 23, 2329. (d) Huang, J.; Sun, N.; Yang, J.; Tang, R.; Li, Q.; Ma, D.; Li, Z. Adv. Funct. Mater. 2014, 24, 7645. (e) Huang, J.; Yang, M.; Yang, J.; Tang, R.; Ye, S.; Li, Q.; Li, Z. Org. Chem. Front. 2015, 2, 1608.

    16. [16]

      Wang, S. J.; Oldham Jr., W. J.; Hudack Jr., R. A.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 5695.  doi: 10.1021/ja992924w

    17. [17]

      Parker, C. A.; Rees, W. T. Analyst 1960, 85, 587.  doi: 10.1039/an9608500587

  • 加载中
    1. [1]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    2. [2]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    3. [3]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    4. [4]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    5. [5]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    6. [6]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    7. [7]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    8. [8]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    9. [9]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    10. [10]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    11. [11]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    12. [12]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    13. [13]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    16. [16]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    17. [17]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    18. [18]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    19. [19]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    20. [20]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

Metrics
  • PDF Downloads(0)
  • Abstract views(800)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return