Citation: Yu Xiaoye, Zhou Fan, Chen Jiarong, Xiao Wenjing. Visible Light Photocatalytic N-Radicalbased Intramolecular Hydroamination of Benzamides[J]. Acta Chimica Sinica, ;2017, 75(1): 86-91. doi: 10.6023/A16070367 shu

Visible Light Photocatalytic N-Radicalbased Intramolecular Hydroamination of Benzamides

  • Corresponding author: Chen Jiarong, chenjiarong@mail.ccnu.edu.cn
  • Received Date: 28 July 2016

    Fund Project: National Natural Science Foundation of China 21472058National Natural Science Foundation of China 21272087National Natural Science Foundation of China 21232003and the Youth Chen-Guang Project of Wuhan 2015070404010180National Natural Science Foundation of China 21472057

Figures(7)

  • The 3, 4-dihydroisoquinolinones are a privileged class of heterocyclic motifs and widely found in numerous biologically active compounds. Thus, the development of more efficient and practical methods for their synthesis is highly desirable. Traditional methods are typically focused on transition-metal catalyzed C-H functionalization. Inspired by the recent process of the visible light photocatalytic generation and exploration of N-radicals in organic synthesis, our group in 2014 developed a visible light-induced photocatalytic strategy for direct conversion of the N-H bonds of β, γ-unsaturated hydrazones into N-centred radicals for the first time, and used them in intramolecular radical hydroamination, enabling efficient synthesis of 4, 5-dihydropyrazole derivatives. By employing suitable additives or changing reaction parameters, we also successfully achieved highly regioselective 6-endo N-radical cyclization and oxyamination reactions based on N-centred radicals, providing the valuable 1, 6-dihydropyradazines, pyrazolines, and pyridazines in good yields. In the hope of extending such N-radical-mediated heterocycle synthesis further, we reported a transition-metal free and visible light photocatalytic N-radical-based intramolecular hydroamination of benzamides. The reaction provides a practical and efficient approach to various biologically important 3, 4-dihydroisoquinolinones with generally high yields. Importantly, the continuous flow reaction could significantly shorten the reaction time and still give rise to satisfactory yield. The sunlight irradiation reaction and gram-scale reaction also highlighted the potential synthetic utility of this method. A general procedure for the reaction is as follows:EosinY Na (6.21 mg, 0.009 mmol), NaOH (14.4 mg, 0.36 mmol), amide 1 (0.3 mmol) were dissolved in MeOH (6.0 mL), then, the resulting mixture was degassed via a 'freeze-pump-thaw' procedure (3 times). After that, the resulting mixture was stirred at a distance of ca. 5 cm from 3 W blue LEDs (450~460 nm) at room temperature until the starting amides were consumed as monitored by TLC analysis. After concentration in vacuo, the reaction residue was purified by flash chromatography on silica gel[V(petroleum ether)/V(ethyl acetate)=5:1~2:1] directly to give the desired product.
  • 加载中
    1. [1]

      (a) Goldberg, D. US 2006276496, 2006[Chem. Abstr. 2006, 146, 1286266]. (b) Goldberg, D. US 2010190773, 2010[Chem. Abstr. 2006, 146, 1286266]. (c) Freeze, B. S. WO 20120051410, 2014 [Chem. Abstr. 2012, 156, 573694]. (d) Freeze, B. S. US 2015148334, 2015[Chem. Abstr. 2012, 156, 573694]. (e) Zhang, L.; Wang, C.; Han, J.; Huang, Z. B.; Zhao, Y. J. Org. Chem. 2016, 81, 5256. (f) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.

    2. [2]

      For selected reviews, see: (a) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (赵金钵, 张前, 化学学报, 2015, 73, 1235.) (b) Yuan, J.-W.; Liu, C.; Lei, A.-W. Chem. Commun. 2015, 51, 1394. For selected examples, see: (c) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449. (d) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (e) Tang, Q.; Xia, D.; Jin, X.; Zhang, Q.; Sun, X. Q.; Wang, C. J. Am. Chem. Soc. 2013, 135, 4628. (f) Wodrich, M. D.; Ye, B.; Gonthier, J. F.; Corminboeuf, C.; Cramer, N. Chem. Eur. J. 2014, 20, 15409. (g) Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem. Eur. J. 2016, 22, 5899. (h) Hao, X.-Q.; Du, C.; Zhu, X.; Li, P.-X.; Zhang, J.-H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 3610.

    3. [3]

      For selected reviews on the N-radical chemistry, see: (a) Zard, S. Z.; Chem. Soc. Rev. 2008, 37, 1603. (b) Quiclet-Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557. (c) Hioe, J.; Šakić, D.; Vrček, V.; Zipse, H. Org. Biomol. Chem. 2015, 13, 157.

    4. [4]

      For selected examples, see: (a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. 2004, 6, 1573. (b) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896. (c) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948. (d) Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214. (e) Zhu, M.-K.; Chen, Y.-C.; Loh, T. P. Chem. Eur. J. 2013, 19, 5250. (f) Duan, X.-Y.; Zhou, N.-N.; Fang, R.; Yang, X.-L.; Yu, W.; Han, B. Angew. Chem. Int. Ed. 2014, 53, 3158. (g) Duan, X. Y.; Yang, X. L.; Jia, P. P.; Zhang, M.; Han, B. Org. Lett. 2015, 17, 6022.

    5. [5]

      For selected reviews on the visible light photocatalysis, see: (a) Xuan, J.; Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 6828. (b) Shi, L.; Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687. (c) Prier, C. K.; Rankic, D. A.; Macmillan, D. W. Chem. Rev. 2013, 113, 5322. (d) Xi, Y.-M.; Yi, H.; Lei, A.-W. Org. Biomol. Chem. 2013, 11, 2387. (e) Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046. (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.) (f) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985. (g) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem. Int. Ed. 2015, 54, 15632. (h) Tan, F.; Xiao, W.-J. Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.) (i) Karkas, M. D.; Porco Jr., J. A.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683. (j) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (k) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, doi: 10.1021/acs.accounts.6b00254.

    6. [6]

      For recent reviews, see: (a) Chen, J.-R.; Hu, X. Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044. (b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.

    7. [7]

      For recent examples on the visible light-induced N-radical reactions, see: (a) Cecere, G.; Konig, C. M.; Alleva, J. L.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 11521. (b) Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607. (c) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R. J. Am. Chem. Soc. 2014, 136, 12217. (d) Song, L.; Zhang, L.; Luo, S.; Cheng, J.-P. Chem. Eur. J. 2014, 20, 14231. (e) Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem. Commun. 2014, 50, 9273. (f) Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894. (g) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem. Int. Ed. 2015, 54, 4055. (h) Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492. (i) Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D. Angew. Chem. Int. Ed. 2015, 54, 14017. (j) Davies, J.; Svejstrup, T. D.; Fernandez Reina, D.; Sheikh, N. S.; Leonori, D. J. Am. Chem. Soc. 2016, 138, 8092. (k) Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y.-H.; Yan, X.-M.; Lu, X.; Xu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 2226. (l) Zhao, Y.; Huang, B.; Yang, C.; Xia, W. Org. Lett. 2016, 18, 3326. (m) Brachet, E.; Marzo, L.; Selkti, M.; König, B.; Belmont, P. Chem. Sci. 2016, 7, 5002.

    8. [8]

      Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauchemin, A. M.; Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53, 12163.  doi: 10.1002/anie.201406491

    9. [9]

      (a) Hu, X.-Q.; Qi, X.; Chen, J.-R.; Zhao, Q.-Q.; Wei, Q.; Lan, Y.; Xiao, W.-J. Nat. Commun. 2016, 7, 11188. (b) Hu, X.-Q.; Chen, J.; Chen, J.-R.; Yan, D.-M.; Xiao, W.-J. Chem. Eur. J. 2016, doi: 10.1002/chem.201602597.

    10. [10]

      Please see the Supporting Information for more details.

    11. [11]

      For selected reviews, see:(a) Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Beilstein J. Org. Chem. 2012, 8, 2025. (b) Su, Y.; Straathof, N. J. W.; Hessel, V.; Noël, T. Chem. Eur. J. 2014, 20, 10562. (c) Garlets, Z. J.; Nguyen, J. D.; Stephenson, C. R. Isr. J. Chem. 2014, 54, 351.

    12. [12]

      Yang, G.-Q.; Shen, C.-R.; Zhang, W.-B. Angew. Chem. Int. Ed. 2012, 51, 9141.  doi: 10.1002/anie.201203693

    13. [13]

      (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355. (b) Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688.

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(35)
  • Abstract views(1367)
  • HTML views(239)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return