Citation: Yu Xiaoye, Zhou Fan, Chen Jiarong, Xiao Wenjing. Visible Light Photocatalytic N-Radicalbased Intramolecular Hydroamination of Benzamides[J]. Acta Chimica Sinica, ;2017, 75(1): 86-91. doi: 10.6023/A16070367 shu

Visible Light Photocatalytic N-Radicalbased Intramolecular Hydroamination of Benzamides

  • Corresponding author: Chen Jiarong, chenjiarong@mail.ccnu.edu.cn
  • Received Date: 28 July 2016

    Fund Project: National Natural Science Foundation of China 21472058National Natural Science Foundation of China 21272087National Natural Science Foundation of China 21232003and the Youth Chen-Guang Project of Wuhan 2015070404010180National Natural Science Foundation of China 21472057

Figures(7)

  • The 3, 4-dihydroisoquinolinones are a privileged class of heterocyclic motifs and widely found in numerous biologically active compounds. Thus, the development of more efficient and practical methods for their synthesis is highly desirable. Traditional methods are typically focused on transition-metal catalyzed C-H functionalization. Inspired by the recent process of the visible light photocatalytic generation and exploration of N-radicals in organic synthesis, our group in 2014 developed a visible light-induced photocatalytic strategy for direct conversion of the N-H bonds of β, γ-unsaturated hydrazones into N-centred radicals for the first time, and used them in intramolecular radical hydroamination, enabling efficient synthesis of 4, 5-dihydropyrazole derivatives. By employing suitable additives or changing reaction parameters, we also successfully achieved highly regioselective 6-endo N-radical cyclization and oxyamination reactions based on N-centred radicals, providing the valuable 1, 6-dihydropyradazines, pyrazolines, and pyridazines in good yields. In the hope of extending such N-radical-mediated heterocycle synthesis further, we reported a transition-metal free and visible light photocatalytic N-radical-based intramolecular hydroamination of benzamides. The reaction provides a practical and efficient approach to various biologically important 3, 4-dihydroisoquinolinones with generally high yields. Importantly, the continuous flow reaction could significantly shorten the reaction time and still give rise to satisfactory yield. The sunlight irradiation reaction and gram-scale reaction also highlighted the potential synthetic utility of this method. A general procedure for the reaction is as follows:EosinY Na (6.21 mg, 0.009 mmol), NaOH (14.4 mg, 0.36 mmol), amide 1 (0.3 mmol) were dissolved in MeOH (6.0 mL), then, the resulting mixture was degassed via a 'freeze-pump-thaw' procedure (3 times). After that, the resulting mixture was stirred at a distance of ca. 5 cm from 3 W blue LEDs (450~460 nm) at room temperature until the starting amides were consumed as monitored by TLC analysis. After concentration in vacuo, the reaction residue was purified by flash chromatography on silica gel[V(petroleum ether)/V(ethyl acetate)=5:1~2:1] directly to give the desired product.
  • 加载中
    1. [1]

      (a) Goldberg, D. US 2006276496, 2006[Chem. Abstr. 2006, 146, 1286266]. (b) Goldberg, D. US 2010190773, 2010[Chem. Abstr. 2006, 146, 1286266]. (c) Freeze, B. S. WO 20120051410, 2014 [Chem. Abstr. 2012, 156, 573694]. (d) Freeze, B. S. US 2015148334, 2015[Chem. Abstr. 2012, 156, 573694]. (e) Zhang, L.; Wang, C.; Han, J.; Huang, Z. B.; Zhao, Y. J. Org. Chem. 2016, 81, 5256. (f) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.

    2. [2]

      For selected reviews, see: (a) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (赵金钵, 张前, 化学学报, 2015, 73, 1235.) (b) Yuan, J.-W.; Liu, C.; Lei, A.-W. Chem. Commun. 2015, 51, 1394. For selected examples, see: (c) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449. (d) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (e) Tang, Q.; Xia, D.; Jin, X.; Zhang, Q.; Sun, X. Q.; Wang, C. J. Am. Chem. Soc. 2013, 135, 4628. (f) Wodrich, M. D.; Ye, B.; Gonthier, J. F.; Corminboeuf, C.; Cramer, N. Chem. Eur. J. 2014, 20, 15409. (g) Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem. Eur. J. 2016, 22, 5899. (h) Hao, X.-Q.; Du, C.; Zhu, X.; Li, P.-X.; Zhang, J.-H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 3610.

    3. [3]

      For selected reviews on the N-radical chemistry, see: (a) Zard, S. Z.; Chem. Soc. Rev. 2008, 37, 1603. (b) Quiclet-Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557. (c) Hioe, J.; Šakić, D.; Vrček, V.; Zipse, H. Org. Biomol. Chem. 2015, 13, 157.

    4. [4]

      For selected examples, see: (a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. 2004, 6, 1573. (b) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896. (c) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948. (d) Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214. (e) Zhu, M.-K.; Chen, Y.-C.; Loh, T. P. Chem. Eur. J. 2013, 19, 5250. (f) Duan, X.-Y.; Zhou, N.-N.; Fang, R.; Yang, X.-L.; Yu, W.; Han, B. Angew. Chem. Int. Ed. 2014, 53, 3158. (g) Duan, X. Y.; Yang, X. L.; Jia, P. P.; Zhang, M.; Han, B. Org. Lett. 2015, 17, 6022.

    5. [5]

      For selected reviews on the visible light photocatalysis, see: (a) Xuan, J.; Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 6828. (b) Shi, L.; Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687. (c) Prier, C. K.; Rankic, D. A.; Macmillan, D. W. Chem. Rev. 2013, 113, 5322. (d) Xi, Y.-M.; Yi, H.; Lei, A.-W. Org. Biomol. Chem. 2013, 11, 2387. (e) Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046. (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.) (f) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985. (g) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem. Int. Ed. 2015, 54, 15632. (h) Tan, F.; Xiao, W.-J. Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.) (i) Karkas, M. D.; Porco Jr., J. A.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683. (j) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (k) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, doi: 10.1021/acs.accounts.6b00254.

    6. [6]

      For recent reviews, see: (a) Chen, J.-R.; Hu, X. Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044. (b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.

    7. [7]

      For recent examples on the visible light-induced N-radical reactions, see: (a) Cecere, G.; Konig, C. M.; Alleva, J. L.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 11521. (b) Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607. (c) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R. J. Am. Chem. Soc. 2014, 136, 12217. (d) Song, L.; Zhang, L.; Luo, S.; Cheng, J.-P. Chem. Eur. J. 2014, 20, 14231. (e) Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem. Commun. 2014, 50, 9273. (f) Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894. (g) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem. Int. Ed. 2015, 54, 4055. (h) Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492. (i) Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D. Angew. Chem. Int. Ed. 2015, 54, 14017. (j) Davies, J.; Svejstrup, T. D.; Fernandez Reina, D.; Sheikh, N. S.; Leonori, D. J. Am. Chem. Soc. 2016, 138, 8092. (k) Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y.-H.; Yan, X.-M.; Lu, X.; Xu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 2226. (l) Zhao, Y.; Huang, B.; Yang, C.; Xia, W. Org. Lett. 2016, 18, 3326. (m) Brachet, E.; Marzo, L.; Selkti, M.; König, B.; Belmont, P. Chem. Sci. 2016, 7, 5002.

    8. [8]

      Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauchemin, A. M.; Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53, 12163.  doi: 10.1002/anie.201406491

    9. [9]

      (a) Hu, X.-Q.; Qi, X.; Chen, J.-R.; Zhao, Q.-Q.; Wei, Q.; Lan, Y.; Xiao, W.-J. Nat. Commun. 2016, 7, 11188. (b) Hu, X.-Q.; Chen, J.; Chen, J.-R.; Yan, D.-M.; Xiao, W.-J. Chem. Eur. J. 2016, doi: 10.1002/chem.201602597.

    10. [10]

      Please see the Supporting Information for more details.

    11. [11]

      For selected reviews, see:(a) Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Beilstein J. Org. Chem. 2012, 8, 2025. (b) Su, Y.; Straathof, N. J. W.; Hessel, V.; Noël, T. Chem. Eur. J. 2014, 20, 10562. (c) Garlets, Z. J.; Nguyen, J. D.; Stephenson, C. R. Isr. J. Chem. 2014, 54, 351.

    12. [12]

      Yang, G.-Q.; Shen, C.-R.; Zhang, W.-B. Angew. Chem. Int. Ed. 2012, 51, 9141.  doi: 10.1002/anie.201203693

    13. [13]

      (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355. (b) Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    3. [3]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    14. [14]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(36)
  • Abstract views(1408)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return