Citation: Huang Guojia, Chen Zhigang, Li Maodong, Yang Bo, Xin Mingliang, Li Shiping, Yin Zongjie. Surface Functional Modification of Graphene and Graphene Oxide[J]. Acta Chimica Sinica, ;2016, 74(10): 789-799. doi: 10.6023/A16070360 shu

Surface Functional Modification of Graphene and Graphene Oxide

  • Received Date: 24 July 2016

  • Graphene and graphene oxide have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. Pristine graphene is desirable for applications that require a high electrical conductivity, while many other applications require modified or functionalized forms such as graphene oxide due to its good dispersibility in various solvents. Surface functional modification of graphene and graphene oxide is of crucial importance for their broad applications. Functionalization of graphene enables this material to be processed by solvent assisted techniques, such as layer-by-layer assembly, filtration. It also prevents the agglomeration of single layer graphene and maintains the inherent properties. Structurally modifying graphene and graphene oxide through chemical functionalization reveals the numerous possibilities for tuning its structure. Several chemical and physical functionalization methods have been explored to improve the stabilization and modification of graphene. This review focuses on the surface functional modification of graphene and graphene oxide. The preparation method, basic structure and properties of graphene and graphene oxide were briefly described firstly. On the one hand, in the light of bonding characteristic, the surface functionalization of graphene and graphene oxide is divided into non-covalent binding modification, covalent binding modification and elemental doping. On the other hand, non-covalent functionalization contains four categories: π-π stacking, hydrogen bonding, ionic bonding effect and electrostatic interaction. Meanwhile, covalently functionalization includes four categories: carbon skeleton modification, hydroxy modification, carboxy modification and epoxy group modification due to the reactive functional groups. Doping functionalization consists of N, B, P and other different elements. According to the classification of surface structure characteristics, selected typical case has described the functional modification process in detail. The properties and application prospects of the modified products are also summarized. Finally, current challenges and future research directions are also presented in terms of surface functional modification for graphene and graphene oxide.
  • 加载中
    1. [1]

      [1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. Science 2004, 306, 666.

    2. [2]

      [2] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.

    3. [3]

      [3] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.

    4. [4]

      [4] Orlita, M.; Faugeras, C.; Plochocka, P.; Neugebauer, P.; Martinez, G.; Maude, D. K.; Barra, A. L.; Sprinkle, M.; Berger, C.; de Heer, W. A.; Potemski, M. Phys. Rev. Lett. 2008, 101, 267601.

    5. [5]

      [5] Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620. (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)

    6. [6]

      [6] Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.

    7. [7]

      [7] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.

    8. [8]

      [8] Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30.

    9. [9]

      [9] Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Prog. Polym. Sci. 2010, 35, 1350.

    10. [10]

      [10] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.

    11. [11]

      [11] Dai, J.; Lang, M. Acta Chim. Sinica 2012, 70(11), 1237. (戴静, 郎美东, 化学学报, 2012, 70(11), 1237.)

    12. [12]

      [12] Zhang, S. Acta Chim. Sinica 2012, 70(12), 1394. (张树鹏, 化学学报, 2012, 70(12), 1394.)

    13. [13]

      [13] Heo, J.; Oh, J. W.; Ahn, H. I.; Lee, S. B.; Cho, S. E.; Kim, M. R.; Lee, J. K.; Kim, N. Synth. Met. 2010, 160, 2143.

    14. [14]

      [14] Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. Adv. Mater. 2011, 23, 776.

    15. [15]

      [15] Xie, W.-J.; Fu, Y.-Y.; Ma, H.; Zhang, M.; Fan, L.-Z. Acta Chim. Sinica 2012, 70, 2169. (谢文菁, 傅英懿, 马红, 张沫, 范楼珍, 化学学报, 2012, 70, 2169.)

    16. [16]

      [16] Shi, X.; Gu, W.; Peng, W.; Li, B.; Chen, N.; Zhao, K.; Xian, Y. ACS Appl. Mater. Interf. 2014, 6, 2568.

    17. [17]

      [17] Ba, H.; Podila, S.; Liu, Y.; Mua, X.; Nhuta, J. M.; Papaefthimiou, V.; Zafeiratos, S.; Granger, P.; Huu, C. Catal. Today 2015, 249, 167.

    18. [18]

      [18] Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296.

    19. [19]

      [19] Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H. Biomaterials 2011, 32, 8555.

    20. [20]

      [20] Weaver, C.; Larosa, J.; Luo, X.; Cui, X. ACS Nano 2014, 8, 1834.

    21. [21]

      [21] Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537.

    22. [22]

      [22] Dryer, D.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 229.

    23. [23]

      [23] Park, S.; Hu, Y.; Hwang, J. O.; Lee, E. S.; Casabianca, L. B.; Cai, W.; Potts, J. R.; Ha, H. W.; Chen, S.; Oh, J.; Kim, S. O.; Kim, Y.; Ishii, Y.; Ruoff, R. Nat. Commun. 2012, 3, 638.

    24. [24]

      [24] Hunter, C. A.; Lawson, K. R.; Perkins, C.; Urch, C. J. J. Chem. Soc. Perkin Trans. 2001, 2, 651.

    25. [25]

      [25] Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116(9), 5464.

    26. [26]

      [26] Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Prog. Mater. Sci. 2012, 57(7), 1061.

    27. [27]

      [27] Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C. Chem. Rev. 2012, 112(11), 6156.

    28. [28]

      [28] Bai, H.; Li, C.; Shi, G. Adv. Mater. 2011, 23, 1089.

    29. [29]

      [29] Zhou, L.; Zhang, L.; Liao, L.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z.; Liu, Z. Acta Chim. Sinica 2014, 72(3), 289. (周琳, 张黎明, 廖磊, 杨明媚, 谢芹, 彭海琳, 刘志荣, 刘忠范, 化学学报, 2014, 72(3), 289.)

    30. [30]

      [30] Yu, X.; Sheng, K.; Chen, J.; Li, C.; Shi, G. Acta Chim. Sinica 2014, 72, 319. (于小雯, 盛凯旋, 陈骥, 李春, 石高全, 化学学报, 2014, 72, 319.)

    31. [31]

      [31] Lei, Z.; Zhang, J.; Zhang, L. L.; Kumar, N. A.; Zhao, X. S. Energy Environ. Sci. 2016, 9(6), 1891.

    32. [32]

      [32] Wen, L.; Liu, C.; Song, R.; Luo, H.; Shi, Y.; Li, F.; Cheng, H. Acta Chim. Sinica 2014, 72(3), 333. (闻雷, 刘成名, 宋仁升, 罗洪泽, 石颖, 李峰, 成会明, 化学学报, 2014, 72(3), 333.)

    33. [33]

      [33] Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem. Mater. 2006, 18, 2740.

    34. [34]

      [34] Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Nano Lett. 2009, 9, 1058.

    35. [35]

      [35] Tang, C.; Wu, J.; Wan, Y.; Zhang, Z.; Kang, J.; Xiang, Y.; Zhu, W. Acta Chim. Sinica 2015, 73, 1189. (唐春梅, 邬佳仁, 万一民, 张振俊, 康静, 向圆圆, 朱卫华, 化学学报, 2015, 73, 1189.)

    36. [36]

      [36] Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; Geim, A. K. Nano Lett. 2011, 11, 2396.

    37. [37]

      [37] Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nat. Chem. 2009, 1(5), 403.

    38. [38]

      [38] Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7(11), 3499.

    39. [39]

      [39] Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1(6), 73.

    40. [40]

      [40] Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Nanoscale 2012, 4(19), 5910.

    41. [41]

      [41] Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. ACS Nano 2010, 4(11), 6557.

    42. [42]

      [42] Gómez-Navarro, C.; Burghard, M.; Kern, K. Nano Lett. 2008, 8(7), 2045.

    43. [43]

      [43] Lin, Y.; Guo, X. Acta Chim. Sinica 2014, 72, 277. (林源为, 郭雪峰, 化学学报, 2014, 72, 277.)

    44. [44]

      [44] Guo, Y.; Li, W.; Zheng, M.; Huang, Y. Acta Chim. Sinica 2014, 72, 713. (郭颖, 李午戊, 郑敏燕, 黄怡, 化学学报, 2014, 72, 713.)

    45. [45]

      [45] Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112, 6156.

    46. [46]

      [46] Kozlov, S. M.; Vines, F.; Gorling, A. Carbon 2012, 50, 2482.

    47. [47]

      [47] Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130(18), 5856.

    48. [48]

      [48] Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Chem. Commun. 2009, 13, 1667.

    49. [49]

      [49] Sheng, K.; Xu, Y.; Li, C.; Shi, G. New Carbon Mater. 2011, 26(1), 9.

    50. [50]

      [50] Hou, C.; Huang, T.; Wang, H.; Yu, H.; Zhang, Q.; Li, Y. Sci. Rep. 2013, 3, 3138.

    51. [51]

      [51] Lee, D. W.; Kim, T.; Lee, M. Chem. Commun. 2011, 47, 8259.

    52. [52]

      [52] Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K. Adv. Mater. 2009, 21, 3191.

    53. [53]

      [53] Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. J. Phys. Chem.C 2008, 112(45), 17554.

    54. [54]

      [54] Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Adv. Mater. 2009, 21, 3159.

    55. [55]

      [55] Chang, H. X.; Wang, G. F.; Yang, A.; Tao, X. M.; Liu, X. Q.; Shen, Y. D.; Zheng, Z. J. Adv. Funct. Mater. 2010, 20, 2893.

    56. [56]

      [56] Valles, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Penicaud, A. J. Am. Chem. Soc. 2008, 130, 15802.

    57. [57]

      [57] Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4(4), 1963.

    58. [58]

      [58] Li, D.; Muller, M.; GiljE, S.; Kaner, R.; Wallace, G. Nat. Nanotech. 2008, 3, 101.

    59. [59]

      [59] Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477.

    60. [60]

      [60] Chua, C. K.; Pumera, K. Chem. Soc. Rev. 2013, 42, 3222.

    61. [61]

      [61] Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Ko-synkin, D. V.; Tour, J. M. ACS Nano 2010, 4(4), 1949.

    62. [62]

      [62] Xia, Z.; Leonardi, F.; Gobbi, M.; Liu, Y.; Bellani, V.; Liscio, A.; Kovtun, A.; Li, R.; Feng, X.; Orgiu, E.; Samori, P.; Treossi, E.; Palermo, V. ACS Nano 2016, 10(7), 7125.

    63. [63]

      [63] Bouša, D.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Šturala, J.; Pumera, M.; Sofer, Z. Chemistry 2015, 21(49), 17728.

    64. [64]

      [64] Farquhar, A. K.; Dykstra, H. M.; Waterland, M. R.; Downard, A. J.; Brooksby, P. A. J. Phys. Chem. C 2016, 120(14), 7543.

    65. [65]

      [65] Jin, Z.; Mcnicholas, T. P.; Shih, C. J.; Wang, Q. H.; Paulus, G. L. C.; Hilmer, A. J.; Shimizu, S.; Strano, M. S. Chem. Mater. 2011, 23(14), 3362.

    66. [66]

      [66] Lu, Y. Z.; Jiang, Y. Y.; Wei, W. T.; Wu, H. B.; Liu, M. M.; Niu, L.; Chen, W. J. Mater. Chem. 2012, 22(7), 2929.

    67. [67]

      [67] Yuan, J. C.; Chen, G. H.; Weng, W. G.; Xu, Y. Z. J. Mater. Chem. 2012, 22, 7929.

    68. [68]

      [68] Lai, C.; Sun, Y.; Yang, H.; Zhang, X.; Lin, B. Acta Chim. Sinica 2013, 71(9), 1201. (来常伟, 孙莹, 杨洪, 张雪勤, 林保平, 化学学报, 2013, 71(9), 1201.)

    69. [69]

      [69] Yang, X.; Ma, L.; Wang, S.; Li, Y.; Tu, Y. Polymer 2011, 52(14), 3046.

    70. [70]

      [70] Wang, Z.; Ge, Z.; Zheng, X.; Chen, N.; Peng, C.; Fan, C.; Huang, Q. Nanoscale 2011, 4(2), 394.

    71. [71]

      [71] Nanda, S. S.; Papaefthymiou, G. C.; Dong, K. Y. Crit. Rev. Solid State 2015, 40(5), 1.

    72. [72]

      [72] Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Nano Res. 2014, 8(4), 1.

    73. [73]

      [73] Cao, Y.; Lai, Z.; Feng, J.; Wu, P. J. Mater. Chem. 2011, 21(25), 9271.

    74. [74]

      [74] Mohanty, N.; Berry, V. Nano Lett. 2008, 8(12), 4469.

    75. [75]

      [75] Liu, J.; Liu, Z.; Barrow, C. J.; Yang, W. Anal. Chim. Acta 2015, 859, 1.

    76. [76]

      [76] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130(33), 10876.

    77. [77]

      [77] Yang, H.; Kwon, Y.; Kwon, T.; Lee, H.; Kim, B. J. Small 2012, 8, 3161.

    78. [78]

      [78] Zhu, D. Y.; Xiao, Z. Y.; Liu, X. M. Int. J. Hydrogen Energy 2015, 40, 5081.

    79. [79]

      [79] Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Phys. Chem. Chem. Phys., 2011, 13, 11193.

    80. [80]

      [80] Zhou, H.; Wang, X.; Yu, P.; Chen, X.; Mao, L. Analyst 2011, 137(2), 305.

    81. [81]

      [81] Collins, W. R.; Schmois, E.; Swager, T. M. Chem. Commun. 2011, 47(31), 8790.

    82. [82]

      [82] Wang, X.; Shi, G. Phys. Chem. Chem. Phys. 2015, 17, 28484.

    83. [83]

      [83] Yao, B.; Li, C.; Ma, J.; Shi, G. Phys. Chem. Chem. Phys. 2015, 17, 19538.

    84. [84]

      [84] Zhang, Y.; Liang, Y.; Zhou, J. Acta Chim. Sinica 2014, 72, 367. (张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)

    85. [85]

      [85] Duan, X.; Indrawirawan, S.; Sun, H.; Wang, S. Catal. Today 2015, 249, 184.

    86. [86]

      [86] Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131(43), 15939.

    87. [87]

      [87] Jafari, A.; Ghoranneviss, M.; Elahi, A. S. J. Cryst. Growth 2016, 438, 70.

    88. [88]

      [88] Xie, Z.; Zuo, X.; Zhang, G.; Li, Z.; Wang, C. Chem. Phys. Lett. 2016, 657, 18.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(14)
  • Abstract views(1581)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return