Citation: Wang Jun, Wu Yinglong, Sun Lihe, Zeng Fang, Wu Shuizhu. NIR AIE System for Tracking Release of Taurine and ROS Scavenging[J]. Acta Chimica Sinica, ;2016, 74(11): 910-916. doi: 10.6023/A16070342 shu

NIR AIE System for Tracking Release of Taurine and ROS Scavenging

  • Corresponding author: Wu Shuizhu, shzhwu@scut.edu.cn
  • Received Date: 14 July 2016

    Fund Project: National Key Basic Research Program of China 2013CB834702and the National Natural Science Foundation of China 21474031and the National Natural Science Foundation of China 21574044

Figures(5)

  • Fluorophores with aggregation-induced emission (AIE) feature are favorable tools for both chemical sensing and bioimaging. Inflammatory cells excessively express hydrolytic enzymes (esterase, protease and phosphatase) and are usually exposed to elevated levels of reactive oxygen species (ROS). Overexpression of ROS and the insufficient neutralization by antioxidants may give rise to the development of oxidative stress and chronic inflammation. Taurine (2-aminoethanesulfonic acid), as an effective antioxidant, can protect tissues from oxidative stress associated with various inflammatory diseases. Moreover, it has been recently reported that the incorporation of taurine can amazingly boost the cellular uptake for intracellular accumulation. Herein, we designed and synthesized a new near-infrared (NIR) AIE fluorophore DTPE. We anticipate that, the combination of the hydrophilic taurine with the NIR AIE fluorophore through an ester bond could be a remarkable method for extending the applications of AIE-active fluorophores e.g. as a trackable visualized therapeutic system featuring both imaging esterase-activated taurine release and ROS scavenging. Then we obtained the AIE probe system DTPE-Tau by incorporating taurine with the fluorophore through carbamate bond. The hydrophilic taurine moiety endows the system with enhanced water solubility and cellular uptake ability. The system is characterized by several advantages, such as large Stokes shift (225 nm), low cytotoxicity, and good photostability. The ester bond can be hydrolysed by the overexpressed esterase in inflammatory cells, thereby releasing a taurine moiety for ROS scavenging and in the meantime the AIE fluorophore moiety acts as a reporter for tracking esterase-activated taurine release. The enhancement of emission could serve as the reporting signal. The release rate is determined to be 75% for esterase at 0.05 mg/mL, calculated based on the fluorescence-intensity working curve. Also, the probe has been successfully utilized for tracking esterase-activated release of taurine and scavenging intracellular ROS in RAW264.7 cell line, which shows great potential for trackable visualized therapy.
  • 加载中
    1. [1]

      Li, P.; Xiao, H.; Tang, B. Chin. J. Chem. 2012, 30, 1992.  doi: 10.1002/cjoc.201200652

    2. [2]

      Xia, Z.; Shao, A.; Li, Q.; Zhu, S.; Zhu, W. Acta Chim. Sinica 2016, 74, 351.  doi: 10.6023/A16010001
       

    3. [3]

      Fan, J. L.; Xu, Q. L.; Zhu, H.; Peng, X. J. Chin. J. Org. Chem. 2014, 34(8), 1623.  doi: 10.6023/cjoc201403024

    4. [4]

      Chen, Y.; Qiu, T.; Zhao, W.; Fan, L. Polym. Chem. 2015, 6, 1576.  doi: 10.1039/C4PY01615G

    5. [5]

      Guo, S.; Zheng, F.; Zeng, F.; Wu, S. Z. Chinese J. Polym. Sci. 2016, 34, 830.  doi: 10.1007/s10118-016-1793-5

    6. [6]

      Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Z. Chem. Commun. 2013, 49, 403.  doi: 10.1039/C2CC37329G

    7. [7]

      Yu, C.; Wu, Y.; Zeng, F.; Li, X.; Shi, J.; Wu, S. Z. Biomacromolecules 2013, 14, 4507.  doi: 10.1021/bm401548u

    8. [8]

      Pan, L.; Luo, W.; Chen, M.; Liu, J.; Xu, L.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z. Chin. J. Org. Chem. 2016, 36(6), 1316.  doi: 10.6023/cjoc201602020

    9. [9]

      Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem. 2012, 4, 973.  doi: 10.1038/nchem.1500

    10. [10]

      Du, F. K.; Xu, J. S.; Zeng, F.; Wu, S. Z. Acta Chim. Sinica 2016, 74, 241.  doi: 10.6023/A15120780
       

    11. [11]

      Akdeniz, A.; Mosca, L.; Minami, T.; Anzenbacher Jr., P. Chem. Commun. 2015, 51, 5770.  doi: 10.1039/C5CC00376H

    12. [12]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74(2), 165.  doi: 10.6023/A15090628
       

    13. [13]

      Shi, D. T.; Zhou, D.; Zang, Y.; Li, J.; Chen, G. R.; James, T. D.; He, X. P.; Tian, H. Chem. Commun. 2015, 51, 3653.  doi: 10.1039/C4CC09771H

    14. [14]

      Wu, B. Y.; Yan, X. P. Chem. Commun. 2015, 51, 3903.  doi: 10.1039/C5CC00286A

    15. [15]

      Zhang, Z.; Huang, J.; Dong, B.; Yuan, Q.; He, Y.; Wolfbeis, O. S. Nanoscale 2015, 7, 4149.  doi: 10.1039/C4NR07559E

    16. [16]

      Hou, X.; Yu, Q.; Zeng, F.; Ye, J.; Wu, S. J. Mater. Chem. B 2015, 3, 1042.

    17. [17]

      Ding, J.; Li, H.; Wang, C.; Yang, J.; Xie, Y.; Peng, Q.; Li, Q.; Li, Z. ACS Appl. Mater. Interfaces 2015, 7, 11369.  doi: 10.1021/acsami.5b01800

    18. [18]

      Xu, S. Y.; Sun, X.; Ge, H.; Arrowsmith, R. L.; Fossey, J. S.; Pascu, S. I.; Jiang, Y. B.; James, T. D. Org. Biomol. Chem. 2015, 13, 4143.  doi: 10.1039/C4OB02267J

    19. [19]

      Au-Yeung, H. Y.; Chan, J.; Chantarojsiri, T.; Chang, C. J. J. Am. Chem. Soc. 2013, 135, 15165.  doi: 10.1021/ja4072964

    20. [20]

      He, X. P.; Tian, H. Small 2016, 12, 144.  doi: 10.1002/smll.v12.2

    21. [21]

      Hettiarachchi, S. U.; Prasai, B.; McCarley, R. L. J. Am. Chem. Soc. 2014, 136, 7575.  doi: 10.1021/ja5030707

    22. [22]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    23. [23]

      Gao, M.; Hu, Q.; Feng, G.; Tang, B. Z.; Liu, B. J. Mater. Chem. B 2014, 2, 3438.  doi: 10.1039/c4tb00345d

    24. [24]

      Tang, X.; Bai, Q.; Peng, Q.; Gao, Y.; Li, J.; Liu, Y.; Yao, L.; Lu, P.; Yang, B.; Ma, Y. Chem. Mater. 2015, 27, 7050.  doi: 10.1021/acs.chemmater.5b02685

    25. [25]

      Liu, Z.; Xue, W.; Cai, Z.; Zhang, G.; Zhang, D. J. Mater. Chem. 2011, 21, 14487.  doi: 10.1039/c1jm12400e

    26. [26]

      Zhang, Y.; Kong, L.; Shi, J.; Tong, B.; Zhi, J.; Feng, X.; Dong, Y. Chin. J. Chem. 2015, 33, 701.  doi: 10.1002/cjoc.v33.7

    27. [27]

      Hu, F.; Zhang, G.; Zhan, C.; Zhang, W.; Yan, Y.; Zhao, Y.; Fu, H.; Zhang, D. Small 2015, 11, 1335.  doi: 10.1002/smll.201402051

    28. [28]

      Yang, J.; Huang, J.; Sun, N.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Chemistry 2015, 21, 6862.  doi: 10.1002/chem.201406190

    29. [29]

      Gao, Y.; Qu, Y.; Jiang, T.; Zhang, H.; He, N.; Li, B.; Wu, J.; Hua, J. J. Mater. Chem. C 2014, 2, 6353.

    30. [30]

      Ma, S.; Zhang, J.; Chen, J.; Wang, L.; Xu, B.; Tian, W. Chin. J. Chem. 2013, 31, 1418.  doi: 10.1002/cjoc.v31.11

    31. [31]

      Ewa, K.; Magdalena, P.; Barbara, L.; Malgorzata, O.; Pawel, M.; Wlodzimierz, M. Ann. Rheum. Dis. 2012, 71, 262.  doi: 10.1136/annrheumdis-2011-200123

    32. [32]

      Wu, Y.; Huang, S.; Zeng, F.; Wang, J.; Yu, C.; Huang, J.; Xie, H.; Wu, S. Chem. Commun. 2015, 51, 12791.  doi: 10.1039/C5CC04771D

    33. [33]

      Marcinkiewicz, J.; Kontny, E. Amino Acids 2014, 46, 7.  doi: 10.1007/s00726-012-1361-4

    34. [34]

      Hou, J. T.; Li, K.; Yang, J.; Yu, K. K.; Liao, Y. X.; Ran, Y. Z.; Liu, Y. H.; Zhou, X. D.; Yu, X. Q. Chem. Commun. 2015, 51, 6781.  doi: 10.1039/C5CC01217A

    35. [35]

      Long, L.; Wu, Y.; Wang, L.; Gong, A.; Hu, F.; Zhang, C. Chem. Commun. 2015, 51, 10435.  doi: 10.1039/C5CC03972J

    36. [36]

      Reja, S. I.; Bhalla, V.; Sharma, A.; Kaur, G.; Kumar, M. Chem. Commun. 2014, 50, 11911.  doi: 10.1039/C4CC05356G

    37. [37]

      Wu, Y.; Wang, J.; Zeng, F.; Huang, S.; Huang, J.; Xie, H.; Yu, C.; Wu, S. Z. ACS Appl. Mater. Interfaces 2016, 8, 1511.  doi: 10.1021/acsami.5b11023

    38. [38]

      Xiao, H.; Xin, K.; Dou, H.; Yin, G.; Quan, Y.; Wang, R. Chem. Commun. 2015, 51, 1442.  doi: 10.1039/C4CC07411D

    39. [39]

      Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820.  doi: 10.1021/ja505988g

    40. [40]

      Sun, J. J.; Piao, S.; Cha, Y. N.; Kim, C. J. Clin. Biochem. Nutr. 2009, 45, 37.  doi: 10.3164/jcbn.08-262

    41. [41]

      Zhou, J.; Du, X.; Li, J.; Yamagata, N.; Xu, B. J. Am. Chem. Soc. 2015, 137, 10040.  doi: 10.1021/jacs.5b06181

    42. [42]

      Wang, J.; Wu, Y.; Zeng, F.; Huang, S.; Wu, S. Faraday Discuss. 2016, DOI:10. 1039/C6FD00118A.  doi: 10.1039/C6FD00118A

    43. [43]

      Pan, G.; Liu, S.; Zhao, X.; Zhao, J.; Fan, C.; Cui, W. Biomaterials 2015, 53, 202.  doi: 10.1016/j.biomaterials.2015.02.078

    44. [44]

      Yang, Y.-C.; Lu, H.-H.; Wang, W.-T.; Liau, I. Anal. Chem. 2011, 83, 8267.  doi: 10.1021/ac202077x

    45. [45]

      Salonen, T.; Sareila, O. U.; Kankaanranta, H.; Tuominen, R.; Moilanen, E. Br. J. Pharmacol. 2006, 147, 790.  doi: 10.1038/sj.bjp.0706672

    46. [46]

      Wang, B.; Yu, P. F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. Chem. Commun. 2013, 49, 1014.  doi: 10.1039/C2CC37803E

    47. [47]

      Karlsson, M.; Kurz, T.; Brunk, U. T.; Nilsson, S. E.; Frennesson, C. I. Biochem. J. 2010, 428, 183.  doi: 10.1042/BJ20100208

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    6. [6]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    7. [7]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    12. [12]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    13. [13]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    19. [19]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    20. [20]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

Metrics
  • PDF Downloads(0)
  • Abstract views(1033)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return