Citation: Gou Baoquan, Yang Chao, Zhang Lei, Xia Wujiong. Visible-Light Induced Trifluoromethylation of Internal Olefinic C-H Bonds through Photoredox Catalysis[J]. Acta Chimica Sinica, ;2017, 75(1): 66-69. doi: 10.6023/A16070341 shu

Visible-Light Induced Trifluoromethylation of Internal Olefinic C-H Bonds through Photoredox Catalysis

  • Corresponding author: Yang Chao, xyyang@hit.edu.cn Xia Wujiong, xiawj@hit.edu.cn
  • Received Date: 15 July 2016

    Fund Project: State Key Laboratory of Urban Water Resource and Environment 2015DX01National Natural Science Foundation of China 21472030National Natural Science Foundation of China 21372055National Natural Science Foundation of China 21272047and the Fundamental Research Funds for the Central Universities HIT.BRETIV.201310

Figures(4)

  • An approach for direct trifluoromethylation of internal olefins of α-oxoketene dithioacetals has been achieved by using Ru (bpy)3Cl2 as photocatalyst and Togni's reagent as trifluoromethylating agent under irradiation with visible light. Under a nitrogen atmosphere, a mixture of α-oxoketene dithioacetal (0.1 mmol), Togni's reagent (0.15 mmol), Ru (bpy)3Cl2 (0.005 mmol), and Na2CO3 (0.3 mmol) in DMSO (1 mL) was stirred at room temperature for 72 h under 5 W Blue LEDS, which led to the trifluoromethylated products in 40%~90% yield. This protocol provides an efficient and easy access to prepare trifluoromethylated dithioalkyl α-oxoketene acetals under mild conditions, and is highlighted by its operational simplicity and avoiding using toxic reagent. Furthermore, the gram-scale reaction of 1a suggested the potential application of this protocol in organic synthesis.
  • 加载中
    1. [1]

      Kirsch, P. Modern Fluoro-Organic Chemistry, Wiley-VCH, Weinheim, 2004.

    2. [2]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (d) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.

    3. [3]

      Liu, Y. X.; Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2004, 43, 879.  doi: 10.1002/(ISSN)1521-3773

    4. [4]

      (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.(b) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650. (c) Alonso, C.; Marigorta, E. M.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847. (d) Zeng, T.; Xuan, J.; Chen, J.; Lu, L.; Xiao, W. Imag. Sci. Photochem. 2014, 32, 415. (e) Peng, R.; Yang, B.; Chen, Z.; Xu, L.; Wang, S. Chin. J. Org. Chem. 2014, 34, 980. (彭蕊, 杨彬淼, 陈志敏, 徐力, 王少华, 有机化学, 2014, 34, 980.) (f) Wang, G.; He, X.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2014, 34, 837. (王光祖, 赫侠平, 戴建军, 许华建, 有机化学, 2014, 34, 837.) (g) Zhang, Q.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34, 662. (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.) (h) He, Z.; Huang, Y.; Francis, V. Acta Chim. Sinica 2013, 71, 700. (何展荣, 黄毅勇, Francis, V.化学学报, 2013, 71, 700.)

    5. [5]

      Sanhueza, I. A.; Bonney, K. J.; Nielsen, M. C.; Schoenebeck, F. J. Org. Chem. 2013, 78, 7749.  doi: 10.1021/jo401099e

    6. [6]

      Zhang, Y. Q.; Liu, J. D.; Xu, H. Org. Biomol. Chem. 2013, 11, 6242.  doi: 10.1039/c3ob41283k

    7. [7]

      For selected recent reports on addition of CF3 reagents to alkenes, see: (a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462. (b) Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000. (c) Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem. Int. Ed. 2013, 52, 9747. (d) Wang, X.; Ye, Y. X.; Zhang, S. N.; Feng, J. J.; Xu, Y.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2011, 133, 16410.

    8. [8]

      Mao, Z. F.; Huang, F.; Yu, H. F.; Chen, J. P.; Yu. Z. K.; Xu, Z. Q. Chem. Eur. J. 2014, 20, 3439.  doi: 10.1002/chem.v20.12

    9. [9]

      For selected recent reports on the trifluoromethylation of aromatics, see: (a) Ye, Y. D.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. (b) Zeng, Y. W.; Zhang, L. J.; Zhao, Y. C.; Ni, C. F.; Zhao, J. W.; Hu, J. B. J. Am. Chem. Soc. 2013, 135, 2955. (c) Wang, X.; Xu, Y.; Mo, F. Y.; Ji, G.; Qiu, D.; Feng, J. J.; Ye, Y. X.; Zhang, S. N.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2013, 135, 10330.(d) Hafner, A.; Bräse, S. Angew. Chem., Int. Ed. 2012, 51, 3713.

    10. [10]

      For selected recent examples, see: (a) Hu, M. Y.; Ni, C. F.; Hu, J. B. J. Am. Chem. Soc. 2012, 134, 15257. (b) Novk, P.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012, 134, 16167. (c) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem., Int. Ed. 2012, 51, 4577.(d) Niedermann, K.; Früh, N.; Senn, R.; Czarniecki, B.; Verel, R.; Togni, A. Angew. Chem., Int. Ed. 2012, 51, 6511. (e) Li, Z.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51, 1225.

    11. [11]

      For Selected recent reports, see: (a) He, Z.; Luo, T.; Hu, M. Y.; Cao, Y. J.; Hu, J. B. Angew. Chem., Int. Ed. 2012, 51, 3944. (b) Li, Y.; Wu, L. P.; Neumann, H.; Beller, M. Chem. Commun. 2013, 49, 2628.

    12. [12]

      Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szab, K. J. Org. Lett. 2012, 14, 2882.  doi: 10.1021/ol3011419

    13. [13]

      Omote, M.; Tanaka, M.; Ikeda, A.; Nomura, S.; Tarui, A.; Sato, K.; Ando, A. Org. Lett. 2012, 14, 2286.  doi: 10.1021/ol300670n

    14. [14]

      For selected recent examples of transition-metal-catalyzed (hetero) arene C-H Trifluoromethylation, see: (a) Zhang, X.-G.; Dai, H.-X.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 11948. (b) Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2013, 49, 6385. (c) Chu, L. L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298. (d) Mejia, E.; Togni, A. ACS Catal. 2012, 2, 521. (e) Ji, Y. L.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. USA 2011, 108, 14411. (f) Ye, Y. D.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464. (g) Mu, X.; Chen, S. J.; Zhen, X. L.; Liu, G. S. Chem. Eur. J. 2011, 17, 6039. (h) Wang, X. S.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.

    15. [15]

      (a) Yang, Y. D.; Iwamoto, K.; Tokunaga, E.; Shibata, N. Chem. Commun. 2013, 49, 5510. (b) Wu, X. Y.; Chu, L. L.; Qing, F.-L. Tetrahedron Lett. 2013, 54, 249.

    16. [16]

      (a) Ilchenko, N. O.; Janson, P. G.; Szab, K. J. Chem. Commun. 2013, 49, 6614. (b) Wang, X.; Ye, Y. X.; Ji, G. J.; Xu, Y.; Zhang, S. N.; Feng, J. J.; Zhang, Y.; Wang, J. B. Org. Lett. 2013, 15, 3730. (c) Uraguchi, D.; Yamamoto, K.; Ohtsuka, Y.; Tokuhisa, K.; Yamakawa, T. Appl. Catal. A 2008, 342, 137. (d) Feng, C.; Loh, T.-P. Chem. Sci. 2012, 3, 3458. (e) Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2013, 52, 12414. (f) Besset, T.; Cahard, D.; Pannecoucke, X. J. Org. Chem. 2014, 79, 413. (g) Jiang, H.; Huang, C. M.; Guo, J. J.; Zeng, C. Q.; Zhang, Y.; Yu, S. Y. Chem. Eur. J. 2012, 18, 15158. (h) Iqbal, N.; Choi, S.; Kim, E.; Cho, E. J. J. Org. Chem. 2012, 77, 11383. (i) Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2012, 51, 9567.

    17. [17]

      (a) Yu, H. F.; Yu, Z. K. Angew. Chem., Int. Ed. 2009, 48, 2929. (b) Yu, H. F.; Jin, W. W.; Sun, C. L.; Chen, J. P.; Du, W. M.; He, S. B.; Yu, Z. K. Angew. Chem., Int. Ed. 2010, 49, 5792. (c) Pan, L.; Bi, X. H.; Liu, Q. Chem. Soc. Rev. 2013, 42, 1251.

    18. [18]

      Wang, L. D.; He, W.; Yu, Z. K. Chem. Soc. Rev. 2013, 42, 599.  doi: 10.1039/C2CS35323G

    19. [19]

      Junjappa, H.; Ila, H.; Asokan, C. V. Tetrahedron 1990, 46, 5423.  doi: 10.1016/S0040-4020(01)87748-6

    20. [20]

      Selected recent reports:(a) Fu, Z. Q.; Wang, M.; Ma, Y. H.; Liu, Q.; Liu, J. J. Org. Chem. 2008, 73, 7625. (b) Misra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1246. (c) Rao, H. S. P.; Sivakumar, S. J. Org. Chem. 2006, 71, 8715.

    21. [21]

      Selected recent reports:(a) Hu, J. L.; Zhang, Q.; Yuan, H. J.; Liu, Q. J. Org. Chem. 2008, 73, 2442. (b) Bi, X. H.; Dong, D. W.; Liu, Q.; Pan, W.; Zhao, L.; Li, B. J. Am. Chem. Soc. 2005, 127, 4578. (c) Sundaram, G. S. M.; Venkatesh, C.; Kumar, U. K. S.; Ila, H.; Junjappa, H. J. Org. Chem. 2004, 69, 5760.

    22. [22]

      Selected recent reports:(a) Yu, H. F.; Dong, D. W.; Ouyang, Y.; Wang, Y.; Liu, Q. Synlett 2007, 151. (b) Dong, D. W.; Ouyang, Y.; Yu, H. F.; Liu, Q.; Liu, J.; Wang, M.; Zhu, J. J. Org. Chem. 2005, 70, 4535.

    23. [23]

      Xu, C.; Liu, J. X.; Ming, W. B.; Liu, Y. J.; Liu, J.; Wang, M.; Liu, Q. Chem. Eur. J. 2013, 19, 9104.  doi: 10.1002/chem.v19.28

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    9. [9]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    12. [12]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    13. [13]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    14. [14]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    15. [15]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    16. [16]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    17. [17]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    18. [18]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    19. [19]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    20. [20]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

Metrics
  • PDF Downloads(9)
  • Abstract views(684)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return