Citation: Li Ran, Lu Yanying, Lei Kaixiang, Li Fujun, Cheng Fangyi, Chen Jun. Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 199-205. doi: 10.6023/A16070329 shu

Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries

  • Corresponding author: Cheng Fangyi, fycheng@nankai.edu.cn.Tel
  • Received Date: 7 July 2016
    Revised Date: 30 September 2016

    Fund Project: Ministry of Education 113016AProject supported by the National Natural Science Foundation of China 21322101, 21231005111 Project B12015

Figures(9)

  • Recycling use is one of the energy and resource saving strategies to dispose depleted batteries, especially primary lithium batteries that employ electrode materials based on expensive and low-abundance elements. In this study, we report in detail the recycling use of discharged Li-AgVO3 primary battery for rechargeable Li-O2 battery. We demonstrate that the discharged Li-AgVO3 cell, in which metallic silver nanoparticles in-situ generated in the vanadium oxide nanowires cathode efficiently catalyze the oxygen reduction/evolution reactions (ORR/OER), can be resumed as rechargeable Li-O2 cells when they are exposed at O2 atmosphere. By controlling the discharge depths, we obtained different cathodes that were composed of vanadium oxide nanowires and silver nanoparticles. As the electrode was discharged to a lower voltage, more silver nanoparticles with larger particle size were distributed on the surface of vanadium oxides, as a result of the sequential reduction of Ag+ to Ag0 and V5+ to V4+. Specifically, the average size of formed Ag nanoparticles was 15 nm and 70 nm at ceased discharge voltage of 2.9 V and 2.0 V, respectively, while the formation of V4+ was observed at discharge voltage lower than 2.3 V. Electrochemical tests indicated that the Li-O2 cells assembled with the AgVO3 cathode discharged to 2.3 V (AgVO3-2.3) exhibited the highest specific capacity (9000 mAh·gcarbon-1), the lowest overpotential and robust cycling performance (up to 95 cycles at the current density of 300 mA·gcarbon-1). The remarkable electrochemical performance of the Li-O2 battery with the AgVO3-2.3 cathode is attributed to the optimization of amount, size and distribution of generated silver nanoparticles that contribute to high electronic conductivity and abundant active sites for the ORR/OER. A combined analysis of electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the AgVO3-2.3 cathode enables the reversible formation and decomposition of Li2O2 with lower charge transfer resistance on discharge and charge. The results presented here would provide new insight into the promising recycling application of depleted primary Li-AgVO3 batteries in rechargeable high-capacity Li-O2 batteries.
  • 加载中
    1. [1]

      Takeuchi, K. J.; Marschilok, A. C.; Davis, S. M.; Leising, R. A.; Takeuchi, E. S. Coord. Chem. Rev. 2001, 219, 283.

    2. [2]

      Cheng, F.; Chen, J. J. Mater. Chem. 2011, 21, 9841. 

    3. [3]

      Han, C.; Pi, Y.; An, Q.; Mai, L.; Xie, J.; Xu, X.; Xu, L.; Zhao, Y. Nano Lett. 2012, 12, 4668.

    4. [4]

      Liang, S.; Zhou, J.; Pan, A.; Li, Y.; Chen, T.; Tian, Z.; Ding, H. Mater. Lett. 2012, 74, 176.

    5. [5]

      Zeng, H.; Wang, Q.; Rao, Y. RSC Adv. 2015, 5, 3011.

    6. [6]

      Kang, D. H.; Chen, M.; Ogunseitan, O. A. Environ. Sci. Technol. 2013, 47, 5495. 

    7. [7]

      Liu, Q.; Xu, J.; Xu, D.; Zhang, X. Nat. Commun. 2015, 6, 7892.

    8. [8]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    9. [9]

      Sen, X.; Guo, Y.; Wan, L. Scientia Sinica Chimica 2011, 41, 1229. 

    10. [10]

      Zhang, Z.; Li, L.; Ren, Q.; Xu, Q.; Cao, B. Chin. J. Chem. 2016, 34, 631.

    11. [11]

      Zhang, Y.; Li, Y.; Xia, X.; Wang, X.; Gu, C.; Tu, J. Sci. China Tech. Sci. 2015, 58, 1809. 

    12. [12]

      Chen, J.; Cheng, F. Acc. Chem. Res. 2009, 42, 713. 

    13. [13]

      Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2, 830. 

    14. [14]

    15. [15]

      Cao, Y.; Wei, Z.; He, J.; Zang, J.; Zhang, Q.; Zheng, M.; Dong, Q. F. Energy Environ. Sci. 2012, 5, 9765. 

    16. [16]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. 

    17. [17]

    18. [18]

    19. [19]

       

    20. [20]

    21. [21]

      Hu, Y.; Zhang, T.; Cheng, F.; Zhao, Q.; Han, X.; Chen, J. Angew. Chem. Int. Ed. 2015, 54, 4338. 

    22. [22]

      Zhang, S.; Li, W.; Li, C.; Chen, J. J. Phys. Chem. B 2006, 110, 24855. 

    23. [23]

      Bao, Q.; Bao, S.; Li, C. M.; Qi, X.; Pan, C.; Zang, J.; Wang, W.; Tang, D. Y. Chem. Mater. 2007, 19, 5965. 

    24. [24]

      Xu, Y.; Han, X.; Zheng, L.; Wei, S.; Xie, Y. Dalton Trans. 2011, 40, 10751.

    25. [25]

      Kirshenbaum, K.; Bock, D. C.; Lee, C. Y.; Zhong, Z.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S. Science 2015, 347, 149. 

    26. [26]

      Wittmaier, D.; Cañas, N. A.; Biswas, I.; Friedrich, K. A. Adv. Energy Mater. 2015, 5, 1500763. 

    27. [27]

    28. [28]

      Kumar, S.; Selvaraj, C.; Scanlon, L. G.; Munichandraiah, N. Phys. Chem. Chem. Phys. 2014, 16, 22830. 

    29. [29]

      Cui, Q.; Zhang, Y.; Peng, Z. Chem. Res. Chin. Univ. 2016, 32, 106. 

    30. [30]

      Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R. S. Nat. Commun. 2014, 5, 4895. 

    31. [31]

      Park, J. B.; Luo, X.; Lu, J.; Shin, C. D.; Yoon, C. S.; Amine, K.; Sun, Y. K. J. Phys. Chem. C 2015, 119, 15036. 

    32. [32]

      Rozier, P.; Savariault, J. M.; Galy, J. J. Solid State Chem. 1996, 122, 303. 

    33. [33]

      Song, J.; Lin, Y.; Yao, H.; Fan, F.; Li, X.; Yu, S. ACS Nano 2009, 3, 653.

    34. [34]

      Lim, S. H.; Kim, B. K.; Yoon, W. Y. J. Appl. Electrochem. 2012, 42, 1045. 

    35. [35]

      Li, F.; Tang, D.-M.; Zhang, T.; Liao, K.; He, P.; Golberg, D.; Yamada, A.; Zhou, H. Adv. Energy Mater. 2015, 5, 1500294. 

    36. [36]

      Cui, Q.; Zhang, Y.; Ma, S.; Peng, Z. Sci. Bull. 2015, 60, 1227.

    37. [37]

      Liu, Q.; Jiang, Y.; Xu, J.; Xu, D.; Chang, Z.; Yin, Y.; Liu, W.; Zhang, X. Nano Res. 2015, 8, 576.

    38. [38]

      Shao, X.; Zhang, T.; Wen, Z. Chin. J. Chem. 2017, 35, 35.

    39. [39]

  • 加载中
    1. [1]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    15. [15]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(4)
  • Abstract views(1494)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return