Citation: Liu Qingchao, Ma Shiyu, Xu Jijing, Li Zhongjun, Zhang Xinbo. Design and Preparation of Advanced Materials for Lithium-Air Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 137-146. doi: 10.6023/A16070326 shu

Design and Preparation of Advanced Materials for Lithium-Air Batteries

  • Corresponding author: Zhang Xinbo, xbzhang@ciac.ac.cn
  • Received Date: 6 July 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No. 21422108

Figures(8)

  • Due to the ultrahigh theoretical energy density, lithium-air battery is proposed as the next generation electrochemical energy storage devices. The improvement of lithium-air battery's electrochemical performances and its application largely rely on highly efficient and stable electrodes. In this review, the development and design of air cathode, modification and protection of lithium anode and assembly of new type lithium-air batteries were summarized.
  • 加载中
    1. [1]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.

    2. [2]

      Luntz, A. C.; Mccloskey, B. D. Chem. Rev. 2014, 114, 11721.

    3. [3]

      Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Chem. Soc. Rev. 2013, 43, 7746.

    4. [4]

    5. [5]

      Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Nano Lett. 2013, 13, 4190. 

    6. [6]

      Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J. H.; Nazar, L. F. Nat. Chem. 2012, 4, 1004. 

    7. [7]

      Zhao, Y. L.; Xu, L.; Mai, L. Q.; Han, C. H.; An, Q. Y.; Xu, X.; Liu, X.; Zhang, Q. J. Proc. Natl. Acad. Sci. USA 2012, 109, 19569. 

    8. [8]

      Zhang, Z. A.; Zhou, G.; Chen, W.; Lai, Y. Q.; Li, J. ECS Electrochem. Lett. 2014, 3, A8.

    9. [9]

      Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. Energy Environ. Sci. 2012, 5,9765. 

    10. [10]

      Li, F. J.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H. S. Chem. Commun. 2013, 49, 1175. 

    11. [11]

      Dong, S. M.; Chen, X.; Zhang, K. J.; Gu, L.; Zhang, L. X.; Zhou, X. H.; Li, L. F.; Liu, Z. H.; Han, P. X.; Xu, H. X.; Yao, J. H.; Zhang, C. J.; Zhang, X. Y.; Shang, C. Q.; Cui, G. L.; Chen, L. Q. Chem. Commun. 2011, 47, 11291. 

    12. [12]

      Mccloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. J. Am. Chem. Soc. 2011, 133, 18038. 

    13. [13]

      Lu, Y. C.; Gasteiger, H. A.; Yang, S. H. J. Am. Chem. Soc. 2011, 133, 19048. 

    14. [14]

      Yu, X. W.; Ye, S. Y. J. Power Sources 2007, 172, 133. 

    15. [15]

      Sun, B.; Munroe, P.; Wang, G. X. Sci. Rep. 2013, 3, 2247.

    16. [16]

      Sun, B.; Chen, S.; Liu, H.; Wang, G. Adv. Funct. Mater. 2015, 25, 4436. 

    17. [17]

      Jung, H. G.; Jeong, Y. S.; Park, J. B.; Sun, Y. K.; Scrosati, B.; Lee, Y. J. ACS Nano 2013, 7, 3532. 

    18. [18]

      Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada; Zhou, H. S. Energy Environ. Sci. 2014, 7, 1648. 

    19. [19]

      Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Nano Lett. 2013, 13, 4679. 

    20. [20]

      Li, F. J.; Tang, D. M.; Chen, Y.; Golberg, D.; Kitaura, H.; Zhang, T.; Yamada, A.; Zhou, H. S. Nano Lett. 2013, 13, 4702. 

    21. [21]

      Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Angew. Chem., Int. Ed. 2014, 53, 442. 

    22. [22]

      Chang, Z. W.; Xu, J. J.; Liu, Q. C.; Li, L.; Zhang, X. B. Adv. Energy Mater. 2015, 22, 1500633.

    23. [23]

      Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. J. Am. Chem. Soc. 2013, 135, 494. 

    24. [24]

      Mccloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshoj, J. S.; Norskov, J. K.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 997. 

    25. [25]

      Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. J. Am. Chem. Soc. 2012, 134, 2902. 

    26. [26]

      Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. Nat. Mater. 2013, 12, 1049.

    27. [27]

      Riaz, A.; Jung, K. N.; Chang, W.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J. W. Chem. Commun. 2013, 49, 5984. 

    28. [28]

      Cui, Y. M.; Wen, Z. Y.; Liu, Y. Energy Environ. Sci. 2011, 4, 4727.

    29. [29]

      Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.

    30. [30]

      Kang, S. J.; Mori, T.; Suk, J.; Kim, D. W.; Kang, Y. K.; Wilcke, W.; Kim, H. C. J. Mater. Chem. A 2014, 2, 9970. 

    31. [31]

      Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. A. J. Am. Chem. Soc. 2013, 135, 2076. 

    32. [32]

      Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y. K.; Scrosati, B. Nano Lett. 2012, 12, 5775. 

    33. [33]

      Yang, X. H.; He, P.; Xia, Y. Y. Electrochem. Commun. 2009, 11, 1127. 

    34. [34]

      Mirzaeian, M.; Hall, P. J. Electrochim. Acta 2009, 54, 7444. 

    35. [35]

      Nakanishi, S.; Mizuno, F.; Nobuhara, K.; Abe, T.; Iba, H. Carbon 2012, 50, 4794. 

    36. [36]

      Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A.; Liu, J.; Zhang, J. G. Nano Lett. 2011, 11, 5071.

    37. [37]

      Lim, H. D.; Park, K. Y.; Song, H.; Jang, E. Y.; Gwon, H.; Kim, J.; Kim, Y. H.; Lima, M. D.; Robles, R. O.; Lepro, X.; Baughman, R. H.; Kang, K. Adv. Mater. 2013, 25, 1348.

    38. [38]

      Cui, Y. M.; Wen, Z. Y.; Liang, X.; Lu, Y.; Jin, J.; Wu, M. F.; Wu, X.W. Energy Environ. Sci. 2012, 5, 7893. 

    39. [39]

      Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Nat. Commun. 2013, 4, 2438.

    40. [40]

      Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Adv. Funct. Mater. 2013, 23, 987. 

    41. [41]

      Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Adv. Funct. Mater. 2012, 22, 3699. 

    42. [42]

      Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D.; Wang, L. M. Chem. Commun. 2012, 48, 7598. 

    43. [43]

      Zhang, L. L.; Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B.; Wang, L. M. Chin. Sci. Bull. 2012, 57, 4210. 

    44. [44]

      Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. J. Mater. Chem. A 2013, 2, 6081.

    45. [45]

      Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Nano Res. 2015, 8, 576. 

    46. [46]

      Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Yin, Y. B.; Yang, X. Y.; Liu, T.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Part. Part. Syst. Charact. 2016, 33, 500. 

    47. [47]

      Xu, J. J.; Wang, Z. L.; Xu, D.; Meng, F. Z.; Zhang, X. B. Energy Environ. Sci. 2014, 7, 2213. 

    48. [48]

      Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L.; Zhang, X. B. Angew. Chem., Int. Ed. 2013, 52, 3887. 

    49. [49]

      Huang, X.; Yu, H.; Tan, H. T.; Zhu, J. X.; Zhang, W. Y.; Wang, C. Y.; Zhang, J.; Wang, Y. X.; Lv, Y. B.; Zeng, Z.; Liu, D. Y.; Ding, J.; Zhang, Q. C.; Srinivasan, M.; Ajayan, P. M.; Hng, H. H.; Yan, Q. Y. Adv. Funct. Mater. 2014, 24, 6516. 

    50. [50]

      Tian, F.; Radin, M. D.; Siegel, D. J. Chem. Mater. 2014, 26, 2952. 

    51. [51]

      Geng, W. T.; He, B. L.; Ohno, T. J. Phys. Chem. C 2013, 117, 25222. 

    52. [52]

      Liu, Q. C.; Xu, J. J.; Xu, D.; Zhang, X. B. Nat. Commun. 2015, 6, 7892. 

    53. [53]

      Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z. N. Adv. Mater. 2011, 23, 1771. 

    54. [54]

      Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Adv. Mater. 2015, 27, 5241. 

    55. [55]

      Cheng, X. L.; Hu, M.; Huang, R.; Jiang, J. S. ACS Appl. Mater. Interfaces 2014, 6, 19176. 

    56. [56]

      Nakai, H.; Kubota, T.; Kita, A.; Kawashima, A. J. Electrochem. Soc. 2011, 158, A798.

    57. [57]

      Liu, Q. C.; Li, L.; Xu, J. J.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Yang, X. Y.; Liu, T.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Adv. Mater. 2015, 27, 8095. 

    58. [58]

      Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Small 2016, 12, 3101. 

    59. [59]

    60. [60]

    61. [61]

      Chen, Y. H.; Freunberger, S. A.; Peng, Z. Q.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. 

    62. [62]

      Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; Lepro, X.; Ovalle-robles, R.; Baughman, R. H.; Kang, K. Angew. Chem., Int. Ed. 2014, 53, 3926. 

    63. [63]

      Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. L.; Goodenough, J. B. J. Am. Chem. Soc. 2014, 136, 8941. 

    64. [64]

      Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. J. Am. Chem. Soc. 2014, 136, 15054. 

    65. [65]

      Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 882. 

  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    20. [20]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

Metrics
  • PDF Downloads(22)
  • Abstract views(5194)
  • HTML views(998)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return