Citation: Liu Qingchao, Ma Shiyu, Xu Jijing, Li Zhongjun, Zhang Xinbo. Design and Preparation of Advanced Materials for Lithium-Air Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 137-146. doi: 10.6023/A16070326 shu

Design and Preparation of Advanced Materials for Lithium-Air Batteries

  • Corresponding author: Zhang Xinbo, xbzhang@ciac.ac.cn
  • Received Date: 6 July 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No. 21422108

Figures(8)

  • Due to the ultrahigh theoretical energy density, lithium-air battery is proposed as the next generation electrochemical energy storage devices. The improvement of lithium-air battery's electrochemical performances and its application largely rely on highly efficient and stable electrodes. In this review, the development and design of air cathode, modification and protection of lithium anode and assembly of new type lithium-air batteries were summarized.
  • 加载中
    1. [1]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.

    2. [2]

      Luntz, A. C.; Mccloskey, B. D. Chem. Rev. 2014, 114, 11721.

    3. [3]

      Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Chem. Soc. Rev. 2013, 43, 7746.

    4. [4]

    5. [5]

      Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Nano Lett. 2013, 13, 4190. 

    6. [6]

      Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J. H.; Nazar, L. F. Nat. Chem. 2012, 4, 1004. 

    7. [7]

      Zhao, Y. L.; Xu, L.; Mai, L. Q.; Han, C. H.; An, Q. Y.; Xu, X.; Liu, X.; Zhang, Q. J. Proc. Natl. Acad. Sci. USA 2012, 109, 19569. 

    8. [8]

      Zhang, Z. A.; Zhou, G.; Chen, W.; Lai, Y. Q.; Li, J. ECS Electrochem. Lett. 2014, 3, A8.

    9. [9]

      Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. Energy Environ. Sci. 2012, 5,9765. 

    10. [10]

      Li, F. J.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H. S. Chem. Commun. 2013, 49, 1175. 

    11. [11]

      Dong, S. M.; Chen, X.; Zhang, K. J.; Gu, L.; Zhang, L. X.; Zhou, X. H.; Li, L. F.; Liu, Z. H.; Han, P. X.; Xu, H. X.; Yao, J. H.; Zhang, C. J.; Zhang, X. Y.; Shang, C. Q.; Cui, G. L.; Chen, L. Q. Chem. Commun. 2011, 47, 11291. 

    12. [12]

      Mccloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. J. Am. Chem. Soc. 2011, 133, 18038. 

    13. [13]

      Lu, Y. C.; Gasteiger, H. A.; Yang, S. H. J. Am. Chem. Soc. 2011, 133, 19048. 

    14. [14]

      Yu, X. W.; Ye, S. Y. J. Power Sources 2007, 172, 133. 

    15. [15]

      Sun, B.; Munroe, P.; Wang, G. X. Sci. Rep. 2013, 3, 2247.

    16. [16]

      Sun, B.; Chen, S.; Liu, H.; Wang, G. Adv. Funct. Mater. 2015, 25, 4436. 

    17. [17]

      Jung, H. G.; Jeong, Y. S.; Park, J. B.; Sun, Y. K.; Scrosati, B.; Lee, Y. J. ACS Nano 2013, 7, 3532. 

    18. [18]

      Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada; Zhou, H. S. Energy Environ. Sci. 2014, 7, 1648. 

    19. [19]

      Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Nano Lett. 2013, 13, 4679. 

    20. [20]

      Li, F. J.; Tang, D. M.; Chen, Y.; Golberg, D.; Kitaura, H.; Zhang, T.; Yamada, A.; Zhou, H. S. Nano Lett. 2013, 13, 4702. 

    21. [21]

      Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Angew. Chem., Int. Ed. 2014, 53, 442. 

    22. [22]

      Chang, Z. W.; Xu, J. J.; Liu, Q. C.; Li, L.; Zhang, X. B. Adv. Energy Mater. 2015, 22, 1500633.

    23. [23]

      Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. J. Am. Chem. Soc. 2013, 135, 494. 

    24. [24]

      Mccloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshoj, J. S.; Norskov, J. K.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 997. 

    25. [25]

      Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. J. Am. Chem. Soc. 2012, 134, 2902. 

    26. [26]

      Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. Nat. Mater. 2013, 12, 1049.

    27. [27]

      Riaz, A.; Jung, K. N.; Chang, W.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J. W. Chem. Commun. 2013, 49, 5984. 

    28. [28]

      Cui, Y. M.; Wen, Z. Y.; Liu, Y. Energy Environ. Sci. 2011, 4, 4727.

    29. [29]

      Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.

    30. [30]

      Kang, S. J.; Mori, T.; Suk, J.; Kim, D. W.; Kang, Y. K.; Wilcke, W.; Kim, H. C. J. Mater. Chem. A 2014, 2, 9970. 

    31. [31]

      Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. A. J. Am. Chem. Soc. 2013, 135, 2076. 

    32. [32]

      Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y. K.; Scrosati, B. Nano Lett. 2012, 12, 5775. 

    33. [33]

      Yang, X. H.; He, P.; Xia, Y. Y. Electrochem. Commun. 2009, 11, 1127. 

    34. [34]

      Mirzaeian, M.; Hall, P. J. Electrochim. Acta 2009, 54, 7444. 

    35. [35]

      Nakanishi, S.; Mizuno, F.; Nobuhara, K.; Abe, T.; Iba, H. Carbon 2012, 50, 4794. 

    36. [36]

      Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A.; Liu, J.; Zhang, J. G. Nano Lett. 2011, 11, 5071.

    37. [37]

      Lim, H. D.; Park, K. Y.; Song, H.; Jang, E. Y.; Gwon, H.; Kim, J.; Kim, Y. H.; Lima, M. D.; Robles, R. O.; Lepro, X.; Baughman, R. H.; Kang, K. Adv. Mater. 2013, 25, 1348.

    38. [38]

      Cui, Y. M.; Wen, Z. Y.; Liang, X.; Lu, Y.; Jin, J.; Wu, M. F.; Wu, X.W. Energy Environ. Sci. 2012, 5, 7893. 

    39. [39]

      Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Nat. Commun. 2013, 4, 2438.

    40. [40]

      Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Adv. Funct. Mater. 2013, 23, 987. 

    41. [41]

      Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Adv. Funct. Mater. 2012, 22, 3699. 

    42. [42]

      Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D.; Wang, L. M. Chem. Commun. 2012, 48, 7598. 

    43. [43]

      Zhang, L. L.; Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B.; Wang, L. M. Chin. Sci. Bull. 2012, 57, 4210. 

    44. [44]

      Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. J. Mater. Chem. A 2013, 2, 6081.

    45. [45]

      Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Nano Res. 2015, 8, 576. 

    46. [46]

      Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Yin, Y. B.; Yang, X. Y.; Liu, T.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Part. Part. Syst. Charact. 2016, 33, 500. 

    47. [47]

      Xu, J. J.; Wang, Z. L.; Xu, D.; Meng, F. Z.; Zhang, X. B. Energy Environ. Sci. 2014, 7, 2213. 

    48. [48]

      Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L.; Zhang, X. B. Angew. Chem., Int. Ed. 2013, 52, 3887. 

    49. [49]

      Huang, X.; Yu, H.; Tan, H. T.; Zhu, J. X.; Zhang, W. Y.; Wang, C. Y.; Zhang, J.; Wang, Y. X.; Lv, Y. B.; Zeng, Z.; Liu, D. Y.; Ding, J.; Zhang, Q. C.; Srinivasan, M.; Ajayan, P. M.; Hng, H. H.; Yan, Q. Y. Adv. Funct. Mater. 2014, 24, 6516. 

    50. [50]

      Tian, F.; Radin, M. D.; Siegel, D. J. Chem. Mater. 2014, 26, 2952. 

    51. [51]

      Geng, W. T.; He, B. L.; Ohno, T. J. Phys. Chem. C 2013, 117, 25222. 

    52. [52]

      Liu, Q. C.; Xu, J. J.; Xu, D.; Zhang, X. B. Nat. Commun. 2015, 6, 7892. 

    53. [53]

      Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z. N. Adv. Mater. 2011, 23, 1771. 

    54. [54]

      Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Adv. Mater. 2015, 27, 5241. 

    55. [55]

      Cheng, X. L.; Hu, M.; Huang, R.; Jiang, J. S. ACS Appl. Mater. Interfaces 2014, 6, 19176. 

    56. [56]

      Nakai, H.; Kubota, T.; Kita, A.; Kawashima, A. J. Electrochem. Soc. 2011, 158, A798.

    57. [57]

      Liu, Q. C.; Li, L.; Xu, J. J.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Yang, X. Y.; Liu, T.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Adv. Mater. 2015, 27, 8095. 

    58. [58]

      Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Small 2016, 12, 3101. 

    59. [59]

    60. [60]

    61. [61]

      Chen, Y. H.; Freunberger, S. A.; Peng, Z. Q.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. 

    62. [62]

      Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; Lepro, X.; Ovalle-robles, R.; Baughman, R. H.; Kang, K. Angew. Chem., Int. Ed. 2014, 53, 3926. 

    63. [63]

      Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. L.; Goodenough, J. B. J. Am. Chem. Soc. 2014, 136, 8941. 

    64. [64]

      Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. J. Am. Chem. Soc. 2014, 136, 15054. 

    65. [65]

      Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 882. 

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(22)
  • Abstract views(5024)
  • HTML views(956)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return