Citation: Luo Feihua, Long Yang, Li Zhengkai, Zhou Xiangge. Palladium Catalyzed Arylation of C(sp3)-H Bonds of Carbonyl β-position in Water[J]. Acta Chimica Sinica, ;2016, 74(10): 805-810. doi: 10.6023/A16060316 shu

Palladium Catalyzed Arylation of C(sp3)-H Bonds of Carbonyl β-position in Water

  • Corresponding author: Zhou Xiangge, 
  • Received Date: 11 July 2016

    Fund Project:

  • The direct activation and functionalization of C-H bonds is fundamentally important in organic synthesis. Among different methods developed, transition metal-catalyzed intermolecular arylation of alkanes, which couples unactivated C(sp3)-H bonds with aryl moieties, is recognized as one of the most powerful strategies to construct valuable arylated alkyl scaffolds. Tremendous progress has thus been made in this field, which usually require harsh reaction conditions such as high temperature and inert atmosphere as well as additives. Furthermore, the reaction media were usually organic solvents with undesirable toxicity and volatility, such as toluene, xylene, tert-amyl alcohol, dichloroethane, etc. Therefore, the development of efficient catalytic unactivated C(sp3)-H arylation under mild reaction conditions is still highly demanded. Herein, we reported a general and practical palladium-catalyzed arylation of β-methylene C(sp3)-H under aqueous conditions by the use of 8-aminoquinoline as directing groups. This method exhibited good to excellent yields up to 96% and good functional group tolerance without other additives and inert gas atmosphere. Meanwhile, the reaction showed good regioselectivity to the β-position of carbonyl group. Mechanism studies showed that the aliphatic Ag-carboxylate salt was critical for this reaction. The silver ion might weaken the C-I bond and function as halogen scavenger for the transformation, while pivalic acid ion might act as base during reaction. A representative procedure for this reaction is as following: To a 10 mL glass tube, N-(quinolin-8-yl) butyramide (42.8 mg, 0.2 mmol), iodobenzene (67 μL, 0.4 mmol), Pd(OAc)2 (4.5 mg), AgPiv (83.6 mg, 0.4 mmol) in 0.4 mL H2O were stirred at 60℃ for 24 h, and then cooled to room temperature. The reaction mixture was extracted with EtOAc. The organic phase was washed with water, dried over magnesium sulfate, and concentrated. The crude product was purified with column chromatography (petroleum/EtOAc) to provide the products in 61%~96% yields.
  • 加载中
    1. [1]

      [1] (a) Yu, J.; Ding, K. Acta Chim. Sinica 2015, 73, 1223. (余金权, 丁奎岭, 化学学报, 2015, 73, 1223.); (b) Yuan, Y.; Song, S.; Jiao, N. Acta Chim. Sinica 2015, 73, 1231. (袁逸之, 宋颂, 焦宁, 化学学报, 2015, 73, 1231.); (c) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (赵金钵, 张前, 化学学报, 2015, 73, 1235.)

    2. [2]

      [2] (a) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074; (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J. 2010, 16, 2654; (c) Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr. J. Chem. 2010, 50, 605; (d) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191; (e) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902; (f) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976; (g) Rouquet, G.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11726; (h) Zhang, B.; Guan, H.; Liu, B.; Shi, B. Chin. J. Org. Chem. 2014, 34, 1487. (张博, 管晗曦, 刘斌, 史炳锋, 有机化学, 2014, 34, 1487.); (i) Zhou, L.; Lu, W. Acta Chim. Sinica 2015, 73, 1250. (周励宏, 陆文军, 化学学报, 2015, 73, 1250.); (j) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283. (廖港, 史炳锋, 化学学报, 2015, 73, 1283.)

    3. [3]

      [3] (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154; (b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965; (c) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7.

    4. [4]

      [4] Tran, L. D.; Daugulis, O. Angew. Chem. Int. Ed. 2012, 51, 5188.

    5. [5]

      [5] (a) Xie, Y. J.; Yang, Y. Z.; Huang, L. H.; Zhang, X. B.; Zhang, Y. H. Org. Lett. 2012, 1238; (b) He, G.; Chen, G. Angew. Chem. Int. Ed. 2011, 50, 5192.

    6. [6]

      [6] Rodriguez, N.; Revilla, R. J. A.; FernandezIbanez, M. A.; Carretero, J. C. Chem. Sci. 2013, 4, 175.

    7. [7]

      [7] (a) Zhang, Q.; Chen, K.; Rao, W.-H.; Zhang, Y.-J.; Chen, F.-J.; Shi, B. F. Angew. Chem. Int. Ed. 2013, 52, 13588; (b) Chen, F. J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S. Q.; Shi, B. F. Chem. Sci. 2013, 4, 4187; (c) Zhang, Q.; Yin, X. S.; Zhao, S.; Fang, S. L.; Shi, B. F. Chem. Commun. 2014, 50, 8353; (d) Chen, K.; Zhang, S. Q.; Jiang, H. Z.; Xu, J. W.; Shi, B. F. Chem. Eur. J. 2015, 21, 3264; (e) Yan, S. Y.; Liu, Y. J.; Liu, B.; Liu, Y. H.; Shi, B. F. Chem. Commun. 2015, 51, 4069; (f) Rao, W. H.; Shi, B. F. Org. Lett. 2015, 17, 2784. (g) Zhang, Q.; Yin, X. S.; Chen, K.; Zhang, S. Q.; Shi, B. F. J. Am. Chem. Soc. 2015, 137, 8219.

    8. [8]

      [8] Fan, M. Y.; Ma, D. W. Angew. Chem. Int. Ed. 2013, 52, 12152.

    9. [9]

      [9] (a) Wasa, M.; Chan, K. S. L.; Zhang, X. G.; He, J.; Miura, M.; Yu, J. Q. J. Am. Chem. Soc. 2012, 134, 18570; (b) He, J.; Wasa, M.; Chan, K. S. L.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 3387; (c) He, J.; Li, S. H.; Deng, Y. Q.; Fu, H. Y.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J. Q. Science 2014, 343, 1216; (d) Li, G.; Wan, L.; Zhang, G. F.; Leow, D. S.; Spangler, J.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 4391; (e) He, J.; Shigenari, T.; Yu, J. Q. Angew. Chem. Int. Ed. 2015, 54, 6545; (f) Zhu, R. Y.; Tanaka, K.; Li, G. C.; He, J.; Fu, H. Y.; Li, S. H.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 7067.

    10. [10]

      [10] (a) Ye, X. H.; He, Z. R.; Ahmed, T.; Weise, K.; Akhmedov, N. G.; Petersena, J. L.; Shi, X. D. Chem. Sci. 2013, 4, 3712; (b) Song, W.; Lackner, S.; Ackermann, L. Angew. Chem. Int. Ed. 2014, 53, 2477.

    11. [11]

      [11] (a) Fischmeister, C.; Doucet, H. Green Chem. 2011, 13, 741; (b) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437; (c) Simon, M. O.; Li, C. J. Chem. Soc. Rev. 2012, 41, 1415; (d) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744.

    12. [12]

      [12] Selected examples: (a) Turner, G. L.; Morris, J. A.; Greaney, M. F. Angew. Chem. Int. Ed. 2007, 46, 7996; (b) Flegeau, E. F.; Popkin, M. E.; Greaney, M. F. Org. Lett. 2008, 10, 2717; (c) Ohnmacht, S. A.; Mamone, P.; Culshaw, A. J.; Greaney, M. F. Chem. Commun. 2008, 1241; (d) Ohnmacht, S. A.; Culshaw, A. J.; Greaney, M. F. Org. Lett. 2010, 12, 224; (e) Ruiz-Rodrguez, J.; Albericio, F.; Lavilla, R. Chem. Eur. J. 2010, 16, 1124; (f) Nishikata, T.; Abela, A. R.; Lipshutz, B. H. Angew. Chem. Int. Ed. 2010, 49, 781; (g) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2010, 49, 6629; (h) Joucla, L.; Batail, N.; Djakovitch, L. Adv. Synth. Catal. 2010, 352, 2929; (i) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153; (j) Chen, F.; Min, Q. Q.; Zhang, X. G. J. Org. Chem. 2012, 77, 2992; (k) Su, Y.-X.; Deng, Y.-H.; Ma, T.-T.; Li, Y.-Y.; Sun, L.-P. Green Chem. 2012, 14, 1979; (l) Ackermann, L.; Pospech, J.; Potukuchi, H. K. Org. Lett. 2012, 14, 2146; (m) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2013, 15, 67; (n) Rao, H. H.; Ma, X. Y.; Liu, Q. Z.; Li, Z. F.; Cao, S. L.; Li, C. J. Adv. Synth. Catal. 2013, 355, 2191; (o) Islam, S.; Larrosa, I. Chem. Eur. J. 2013, 19, 15093.

    13. [13]

      [13] Wang, B.; Nack, W. A.; He, G.; Zhang, S. Y.; Chen, G. Chem. Sci. 2014, 5, 3952.

    14. [14]

      [14] (a) Wu, Z.; Luo, F.; Chen, S.; Li, Z.; Xiang, H.; Zhou, X. Chem. Commun. 2013, 49, 7653; (b) Wu, Z.; Chen, S.; Hu, C.; Li, Z.; Xiang, H.; Zhou, X. ChemCatChem 2013, 5, 2839.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(445)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return