Citation: Ma Mingshuo, Zou Luyi, Li Yan, Ren Aimin, Ding Xiaoli. Theoretical Studies on Photophysical Properties of Isomeric Iridium(Ⅲ) Complexes Ir(ppy)2(acac) Containing Dimesitylboron Moiety[J]. Acta Chimica Sinica, ;2016, 74(9): 764-772. doi: 10.6023/A16060308 shu

Theoretical Studies on Photophysical Properties of Isomeric Iridium(Ⅲ) Complexes Ir(ppy)2(acac) Containing Dimesitylboron Moiety

  • Corresponding author: Ren Aimin, aimin_ren@yahoo.com
  • Received Date: 24 June 2016

    Fund Project: Youth Program of National Natural Science Foundation of China 11504130National Basic Research Program of China (973 Program) 2013CB834801National Natural Science Foundation of China 20973078National Natural Science Foundation of China 21473071National Natural Science Foundation of China 21173099

Figures(4)

  • The phosphorescent photophysical properties for three Ir(Ⅲ) complexes 13 containing dimesitylboryl moiety were investigated by DFT. The electronic structure of the ground and excited state, absorption and emission spectra, the spin-orbital coupling matrix < T1α|HSOC|Sn >, the radiative and non-radiative transition process for complexes 13 were calculated by DFT/TD-DFT approach. The effect of dimesitylboryl substitution at different site of Ir(Ⅲ) complex with phenylpyridine and acetylacetone ligand on the phosphorescent radiative and non-radiative process was discussed. The results reveal that the introduction of B(Mes)2 group to the pyridine ring of the phenylpyridine (ppy) ligand can strengthen the interactions between the metal and the acetylacetone (acac) ligand, reduce the structure relaxation of the molecule from the ground state to the excited triplet state, and maintain the structures of octahedral field, which is conducive to restricted non-radiative transition. Moreover the singlet-triplet energy splitting ΔE(S1-T1) is decreased, the intersystem crossing rate and radiative transition rate are increased. In addition, compared with the substitution at the pyridinyl in complex 1, modifying phenyl group with B(Mes)2 group in complex 2 and 3 could induce larger structural changes from S0 to T1 state and enhance the < S0|HSOC|T1 > value, the spin orbit coupling matrix element between S0 and T1 state of 2 and 3 are greater than that of 1, which will induce a larger non-radiative transition rate for 2 and 3. The variety of substitution position of B(Mes)2 group leads to different d-splitting, different spin-orbital coupling effect in the x, y or z direction, induces the changes of zero field splitting energy and the inequality of radiative transition rates in the three substates (namely, krx, kry, and krz), and the largest radiative rates of 13 are all located in z substates with values of 2.32×105, 1.20×105, and 5.50×105 s-1, respectively. Therefore, we explained the reason that complex 1 has higher phosphorescence quantum efficiency through modifying the pyridine ring of the ppy ligand rather than the benzene ring.
  • 加载中
    1. [1]

      Yersin, H.; Finkenzeller, W. J.; Walter, M. J.; Lupton, J. M.; Djurovich, P. I.; Thompson, M. E.; Tsuboyama, A.; Okada, S.; Ueno, K.; Chi, Y.; Chou, P. T.; Yang, X. H.; Jaiser, F.; Neher, D.; Xiang, H. F.; Lai, S. W.; Lai, P. T.; Che, C. M.; Tanaka, I.; Tokito, S.; Dijken, A. V.; Brunner, K.; Börner, H.; Langeveld B. M. W.; Mak, C. S. K.; Chan, W. K.; Nazeeruddin, M. K.; Klein, C.; Grätzel, M.; Zuppiroli, L.; Berner, D.; Bian, Z. Q.; Huang, C. H. Highly Efficie nt OLEDs with Phosphorescent Materials, Wiley-VCH, 1st edn, Weinheim, 2008.

    2. [2]

      Templier, F. OLED Microdisplays: Technology and Applications, Chapter: OLED Theory and Principles, Wiley-VCH, 1st edn, Weinheim, 2014.

    3. [3]

      Förrest, S. R.; Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E. Nature 1998, 395, 151.  doi: 10.1038/25954

    4. [4]

      Hudson, Z. M.; Sun, C.; Helander, M. G.; Amarne, H.; Lu, Z. H.; Wang, S. Adv. Funct. Mater. 2010, 20, 3426.  doi: 10.1002/adfm.v20:20

    5. [5]

      Zhou, G. J.; Ho, C. L.; Wong, W. Y.; Wang, Q.; Ma, D. G.; Wang, L. X.; Lin, Z. Y.; Marder. T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499.  doi: 10.1002/(ISSN)1616-3028

    6. [6]

      Lin, C. H.; Chang, Y. Y.; Hung, J. Y.; Lin, C. Y.; Chi, Y.; Chung, M. W.; Lin, C. L.; Chou, P. T.; Lee, G. H.; Chang, C. H.; Lin, W. C. Angew. Chem., Int. Ed. 2011, 50, 3182.  doi: 10.1002/anie.201005624

    7. [7]

      Kim, J. B.; Han, S. H.; Yang, K.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Chem. Commun. 2015, 51, 58.  doi: 10.1039/C4CC07768G

    8. [8]

      Wang, F. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2015, 73, 9.  doi: 10.6023/A14100716
       

    9. [9]

      Hudson, Z. M.; Sun, C.; Helander, M. G.; Chang, Y. L.; Lu, Z. H.; Wang, S. J. Am. Chem. Soc. 2012, 134, 13930.  doi: 10.1021/ja3048656

    10. [10]

      Wang, X.; Chang, Y. L.; Lu, J. S.; Zhang, T.; Lu, Z. H.; Wang, S. Adv. Funct. Mater. 2014, 24, 1911.  doi: 10.1002/adfm.v24.13

    11. [11]

      Lu, J. S.; Ko, S. B.; Walters, N. R.; Kang, Y. J.; Sauriol, F.; Wang, S. Angew. Chem., Int. Ed. 2013, 52, 4544.  doi: 10.1002/anie.201300873

    12. [12]

      Yang, X. L.; Sun, N.; Dang, J. S.; Huang, Z.; Yao, C. L.; Xu, X. B.; Ho, C. L.; Zhou, G. J.; Ma, D. G.; Zhao, X.; Wong, W. Y. J. Mater. Chem. C 2013, 1, 3317.  doi: 10.1039/c3tc30352g

    13. [13]

      Tong, G. S.; Che, C. M. Chem.-A Eur. J. 2009, 15, 7225.  doi: 10.1002/chem.200802485

    14. [14]

      Nozaki, K. J. Chin. Chem. Soc. 2006, 53, 101.  doi: 10.1002/jccs.v53.1

    15. [15]

      Williams, J. A. G. Top. Curr. Chem. 2007, 281, 205.  doi: 10.1007/978-3-540-73349-2

    16. [16]

      Siddique, Z. A.; Yamanoto, Y.; Ohno, T.; Nozaki, K. Inorg. Chem. 2003, 42, 6366.  doi: 10.1021/ic034412v

    17. [17]

      Cao Q.; Wang J.; Tian, Z. S.; Xie Z. F. J. Comput. Chem. 2012, 33, 1038.  doi: 10.1002/jcc.v33.10

    18. [18]

      Fraga, S.; Axena, K. M. S.; Karwowski, J., Physical Sciences Data. Amsterdam: Handbook of Atomic Data, Elsevier, Amsterdam, 1976, p. 551.

    19. [19]

      Tong, G. S. M.; Chow, P. K.; To, W. P.; Kwok, W. M.; Che, C. M. Chem.-Eur. J. 2014, 20, 6433.  doi: 10.1002/chem.201304375

    20. [20]

      Li, Y.; Zou, L. Y.; Ren, A. M.; Ma, M. S.; Fan, J. X. Chem.-Eur. J. 2014, 20, 4671.  doi: 10.1002/chem.v20.16

    21. [21]

      Wang, L.; Wu, Y.; Shan, G. G.; Geng, Y.; Zhang, J. Z.; Wang, D. M.; Yang, G. C.; Su, Z. M. J. Mater. Chem. C 2014, 2, 2859.  doi: 10.1039/c3tc31831a

    22. [22]

      Wu, Y.; Shan, G. G.; Li, H. B.; Wu, S. X.; Ren, X. Y.; Geng, Y.; Su, Z. M. Phys. Chem. Chem. Phys. 2015, 17, 2438.  doi: 10.1039/C4CP04919E

    23. [23]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Nakajima, M. T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M, Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    24. [24]

      Shi, Q. H.; Peng, Q.; Sun, S. R.; Shuai, Z. G. Acta Chim. Sinica 2013, 71, 884.  doi: 10.6023/A13010113
       

    25. [25]

      Ma, M. S; Zou, L. Y.; Li, Y.; Ren, A. M.; Feng, J. K. Org. Electron. 2015, 22, 180.  doi: 10.1016/j.orgel.2015.03.037

    26. [26]

      Zhang, J. P.; Jin, L.; Zhang, H. X. Acta Phys.-Chim. Sin. 2011, 27, 1089.
       

    27. [27]

      Zhang, J. P.; Jin, L.; Zhang, H. X.; Bai, F. Q. Chem. J. Chin. Univ. 2011, 32, 2885.
       

    28. [28]

      Li, Z. D.; Suo, B. B.; Zhang, Y.; Xiao, Y. L.; Liu, W. J. Mol. Phys. 2013, 111, 3741.  doi: 10.1080/00268976.2013.785611

    29. [29]

      Li, Z. D.; Xiao, Y. L.; Liu, W. J. J. Chem. Phys. 2014, 137, 154114.

    30. [30]

      Li, Z. D.; Liu, W. J. J. Chem. Phys. 2014, 141, 014110.  doi: 10.1063/1.4885817

    31. [31]

      You, Y.; Park, S. Y. Dalton Trans. 2009, 8, 1267.

    32. [32]

      Zhu, R.; Lin, J.; Wen, G. A.; Liu, S. J.; Wan, J. H.; Feng, J. C.; Fan, Q. L.; Zhong, G. Y.; Wei, W.; Huang, W. Chem. Lett. 2005, 34, 1668.  doi: 10.1246/cl.2005.1668

    33. [33]

      Uoyamal, H.; Goushi, K.; Shizu1, K.; Nomura1, H.; Adachi, C. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    34. [34]

      Yao, L.; Zhang, S. T.; Wang, R.; Li, W. J.; Shen, F. Z.; Yang, B.; Ma, Y. G. Angew. Chem., Int. Ed. 2014, 53, 2119.  doi: 10.1002/anie.201308486

    35. [35]

      Li, W. J. Y.; Pan, Y.; Xiao, R.; Peng, Q. M.; Zhang, S. T.; Ma, D. G.; Li, F.; Shen, F. Z.; Wang, Y. H.; Yang, B.; Ma, Y. G. Adv. Funct. Mater. 2014, 24, 1609.  doi: 10.1002/adfm.v24.11

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    16. [16]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    17. [17]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    18. [18]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    19. [19]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(0)
  • Abstract views(875)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return