Citation: Luo Manlin, Ge Junyu, Sun Wenzheng, Zhai Huifang. Controlled Synthesis of GaSb Nanowires Based on CVD-grown and Their Optical Characterization[J]. Acta Chimica Sinica, ;2016, 74(10): 839-845. doi: 10.6023/A16060298 shu

Controlled Synthesis of GaSb Nanowires Based on CVD-grown and Their Optical Characterization

  • Corresponding author: Ge Junyu, 
  • Received Date: 17 June 2016

  • Gallium antimonide (GaSb) has a relatively narrow band gap, high electron mobility and excellent saturation velocity, in addition, p-type GaSb nanowires (NWs) can be integrated with n-type nanowire devices potentially. These pro-perties make it applicable both optically and electrically. However, it is noted that the radial dimensions and crystal quality have remarkable influence on the performance of photovoltaic devices. Based on traditional CVD technology, the influence of Au nanoparticles on Vapoure-Liquide-Solid (VLS) growth mechanisms has been studied, GaSb nanowires grown on two different substrates which undergo gold sputtering and gold solution dropping treatment have different geometries of seed particle on nanowire tip and shapes of its body, moreover, the contact angle between these two parts provides stable condition for nanowires growth which has considerable impact on growth direction. The entire growing process is divided into three phases by the temperature: the heating phase, the synthesis phase and the cooling phase. Controllable synthesis has been realized by fixing the synthesis temperature at 900℃ and keeping the other factors unchanged. In the meantime, changing the synthesis time from 60 minutes to 240 minutes in steps, it is found that the breakthrough in radial dimensions and specific surface has been realized with the increase of growing time, the GaSb nanowire of 50 μm has been achieved in this paper. Furthermore, the nanowires were systematically characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD), which suggest that this material has the zincblende structure with good crystal quality and high purity. Also, the Multi-mode phonon oscillation and band-edge emission of the nanowires are shown through Raman spectroscopy (Raman) and Photoluminescence Spectroscopy (PL). All these demonstrate the superior surface morphology and good crystallinity of the obtained nanowires. The study makes contribution to the extensive exploration and novel discoveries of precise controllable growth of GaSb nanowires.
  • 加载中
    1. [1]

      [1] Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J. J. Appl. Phys. 2014, 116, 143508.

    2. [2]

      [2] Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M.; Wernersson, L.; Thelander, C. Nano Lett. 2010, 10, 4080.

    3. [3]

      [3] Ali, A. A. Ph.D. Dissertation, Pennsylvania State University, PA, USA, 2012.

    4. [4]

      [4] Borg, B. M.; Wernersson, L. Nanotechnology 2013, 24, 202001.

    5. [5]

      [5] Zhu, H.; Huang, W.; Huang, Y.; Wang, W. Acta Chim. Sinica 2016, 74, 429. (朱昊云, 黄威, 黄宇立, 汪伟志, 化学学报, 2016, 74, 429.)

    6. [6]

      [6] Chen, X.; Zhao, A.; Gao, Q.; Gan, Z.; Tao, W. Acta Chim. Sinica 2014, 72, 1199. (陈旭成, 赵爱武, 高倩, 甘自保, 陶文玉, 化学学报, 2014, 72, 1199.)

    7. [7]

      [7] Ek, M.; Borg, B. M.; Johansson, J.; Dick, K. A. Nano Lett. 2012, 12, 1794.

    8. [8]

      [8] Lu, Z. Ph.D. Dissertation, University of Chinese Academy of Sciences, Shanghai, 2014(in Chinese). (卢振宇, 博士论文, 中国科学院大学, 上海, 2014.)

    9. [9]

      [9] Ding, Y.; Wang, Z. L. J. Phys. Chem. B 2004, 108, 12280.

    10. [10]

      [10] Li, X.; Deng, F.; Ni, C.; Chen, Z. PTCA (Part A: Phys. Test) 2015, 51, 225.

    11. [11]

      [11] Zardo, I.; Abstreiter, G.; Morral, A. F. i. In Nanowires, Ed.: Prete, P., InTech, Croatia, 2010, p. 414.

    12. [12]

      [12] Yang, Z.; Wang, F.; Han, N.; Lin, H.; Cheung, H.; Fang, M.; Yip, S.; Hung, T.; Wong, C.; Ho, J. C. ACS Appl. Mater. Interfaces 2013, 5, 10946.

    13. [13]

      [13] Ren, P. Ph.D. Dissertation, Hunan University, Changsha, 2014(in Chinese). (任品云, 博士论文, 湖南大学, 长沙, 2014.)

    14. [14]

      [14] Maslar, J. E.; Hurst, W. S.; Wang, C. A. J. Appl. Phys. 2008, 103, 013502.

    15. [15]

      [15] Lugstein, A.; Schoendorfer, C.; Weil, M.; Tomastik, C.; Jauss, A.; Bertagnolli, E. Nucl. Instrum. Methods Phys. Res., Sect. B 2007, 255, 309.

    16. [16]

      [16] Zhou, W.; Liu, R.; Tang, D.; Wang, X.; Fan, H.; Pan, A.; Zhang, Q.; Wan, Q.; Zou, B. Nanotechnology 2013, 24, 055201.

    17. [17]

      [17] Yang, Z.; Han, N.; Fang, M.; Lin, H.; Cheung, H.; Yip, S.; Wang, E.; Hung, T.; Wong, C.; Ho, J. C. Nat. Commun. 2014, 5, 5249.

    18. [18]

      [18] Zhao, F.; Yang, Y. Heat Treatment 2009, 24, 7. (赵峰, 杨艳丽, 热处理, 2009, 24, 7.)

    19. [19]

      [19] Lv, Y.; Liu, R.; Wang, L.; Li, G.; Zhang, Y.; Dong, X.; Zhang, B. Superlattices Microstruct. 2015, 83, 834.

    20. [20]

      [20] Sven, B.; Francisco, H. R.; Justin, D. H.; Albert, R. R. Prog. Mater. Sci. 2010, 55, 563.

    21. [21]

      [21] Dick, K. A. Prog. Cryst. Growth Charact. Mater. 2008, 54, 138.

    22. [22]

      [22] Krogstrup, P.; Jørgensen, H. I.; Johnson, E.; Madsen, M. H.; Sørensen, C. B.; Morral, A. F. i; Aagesen, M.; Nygård, J.; Glas, F. J. Phys. D: Appl. Phys. 2013, 46, 313001.

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(2)
  • Abstract views(345)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return