Citation: Zhao Siwei, Zhong Yuxi, Guo Yuanru, Zhang Hongxing, Pan Qingjiang. A Relativistic DFT Study of Mixed Oxo-Imido Uranium Complexes of Polypyrrolic Macrocycle: Structure, Vibrational Spectrum and Oxo/Imido Exchange Reaction[J]. Acta Chimica Sinica, ;2016, 74(8): 683-688. doi: 10.6023/A16060294 shu

A Relativistic DFT Study of Mixed Oxo-Imido Uranium Complexes of Polypyrrolic Macrocycle: Structure, Vibrational Spectrum and Oxo/Imido Exchange Reaction

  • Corresponding author: Guo Yuanru, guoyrnefu@163.com Pan Qingjiang, panqjitc@163.com
  • Received Date: 14 June 2016

    Fund Project: Heilongjiang Province and the Scientific Foundation of Heilongjiang Province for the Returned Overseas Chinese Scholars B201318the Fundamental Research Funds for the Central Universities DL12EB05-02the Natural Science Foundations of China and the Scientific Foundation of Heilongjiang Province for the Returned Overseas Chinese Scholars 21273063

Figures(5)

  • Uranium complexes play an increasingly important role in the fields of power resource, environment and medical science. As the most stable and the most prevalent formation of uranium, hexavalent uranyl species (UO22+) are widely present in the natural water system and the nuclear fuel cycle. Since 2005, the isoelectronic analogue of the uranyl, U(NR)22+, (R=alkyl and aryl) has been a burgeoning area of research. Many bis-imido uranium complexes have been synthesized and investigated for their structural, reactivity and spectroscopic properties. It is found that the bis-imido uranium(VI) complex is capable of undergoing imido exchange reaction with oxo group, but the contrary reaction can not occur. Recently, a flexible polypyrrolic macrocycle (H4L) has been widely used to complexate hexavalent UO2+. An interesting Pacman-like complex, [(THF)(UVIO2)(H2L)], was obtained, where the uranyl ion is accommodated by one N4-donor compartment and the other compartment remains vacant. In the equatorial plane of linear uranyl ion, one THF solvent serves as the fifth coordination. Notably, two hydrogen bonds are formed between the endo-oxo of uranyl and remaining hydrogen atoms of two pyrrolides in the second compartment of macrocycle. In this work, a series of uranium complexes of the polypyrrolic macrocycle with the mixed oxo and imido groups, [(THF)(OUE)(A2L)] (E=NH, NMe and NPh; A=H and Li; labeled as UE-A) were designed, on the basis of their dioxo analogues UO-A (E=O) where the UO-H was experimentally synthesized and characterized. Their structures, Infrared (IR) vibrational spectra and oxo-imido exchange reaction were examined by the scalar relativistic density functional theory (DFT). The U=Oendo bond lengths of UE-A were optimized to be within 1.84~1.89 Å, longer than those of known uranyl complexes which possess regular pentagonal dipyramidal structure. This is related to the interaction between the A and endo-oxo atoms. The calculated U=N distances range from 1.87 to 1.90 Å, which are affected by various R substituent (direct effect) and different A atom that is bonding to endo-oxo atom (indirect effect). All the calculated U=O/U=N distances fall well within the range of experimental values. The partial triple character is unraveled for U=Oexo and U=N bonds, but a modest one between single and double is assigned to U=Oendo of UE-Li. Frequency calculations find the close bonding properties for O=U=NH and O=U=O, both of which show symmetrical and asymmetrical stretching vibrational bands between 700 and 900 cm-1. The introduction of steric substituents of Me and Ph leads to two greatly separate peaks of U=O and U=N-C. The strong coupling of Me and Ph with U=N bonding makes the U=N-C vibrations present in the high-frequency region from 1166 to 1266 cm-1, which are comparable to experimental values of 1170~1270 cm-1 for U=N-R (R=tBu and Ph). The variation of the A atom from H to Li significantly redshifts the U=O and U=N-C stretches. When carefully selecting the A atom and the R substituent, the Pacman-like complex UO-A would be easier to undergo the oxo exchange with the imido group, compared with regular pentagonal dipyrimid complex. This study is expected to provide theoretical support for experimental study of mixed oxo-imido uranium complex.
  • 加载中
    1. [1]

      Hayton, T. W. Nat. Chem. 2013, 5, 451.  doi: 10.1038/nchem.1643

    2. [2]

      Arnold, P. L.; Patel, D.; Wilson, C.; Love, J. B. Nature 2008, 451, 315.  doi: 10.1038/nature06467

    3. [3]

      Arnold, P. L.; Blake, A. J.; Wilson, C.; Love, J. B. Inorg. Chem. 2004, 43, 8206.  doi: 10.1021/ic0487070

    4. [4]

      Arnold, P. L.; Patel, D.; Blake, A. J.; Wilson, C.; Love, J. B. J. Am. Chem. Soc. 2006, 128, 9610.  doi: 10.1021/ja0634167

    5. [5]

      Hayton, T. W.; Boncella, J. M.; Scott, B. L.; Palmer, P. D.; Batista, E. R.; Hay, P. J. Science 2005, 310, 1941.  doi: 10.1126/science.1120069

    6. [6]

      Hayton, T. W.; Boncella, J. M.; Scott, B. L.; Batista, E. R.; Hay, P. J. J. Am. Chem. Soc. 2006, 128, 10549.  doi: 10.1021/ja0629155

    7. [7]

      Spencer, L. P.; Yang, P.; Scott, B. L.; Batista, E. R.; Boncella, J. M. J. Am. Chem. Soc. 2008, 130, 2930.  doi: 10.1021/ja7107454

    8. [8]

      Hayton, T. W.; Boncella, J. M.; Scott, B. L.; Batista, E. R. J. Am. Chem. Soc. 2006, 128, 12622.  doi: 10.1021/ja064400j

    9. [9]

      Laikov, D. N.; Ustynyuk, Y. A. Russ. Chem. Bull. 2005, 54, 820.  doi: 10.1007/s11172-005-0329-x

    10. [10]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    11. [11]

      Baerends, E. J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; Franchini, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S. J. A.; Götz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Gusarov, S.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; Kaminski, J. W.; van Kesse, G.; Kootstra, F.; Kovalenko, A.; Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Mitoraj, M.; Morton, S. M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii, S.; Pavanello, M.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Rodríguez, J. I.; Ros, P.; Schipper, P. R. T.; van Schoot, H.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.; Snijders, J. G.; Solà, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E. M.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L. ADF2014.06, SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, 2014.

    12. [12]

      Klamt, A.; Jonas, V.; Burger, T.; Lohrenz, J. C. W. J. Phys. Chem. A 1998, 102, 5074.  doi: 10.1021/jp980017s

    13. [13]

      Yao, J.; Zheng, X.-J.; Pan, Q.-J.; Schreckenbach, G. Inorg. Chem. 2015, 54, 5438.  doi: 10.1021/acs.inorgchem.5b00483

    14. [14]

      Guo, Y.-R.; Wu, Q.; Odoh, S. O.; Schreckenbach, G.; Pan, Q.-J. Inorg. Chem. 2013, 52, 9143.  doi: 10.1021/ic401440w

    15. [15]

      van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.  doi: 10.1063/1.466059

    16. [16]

      Xiong, Z.; Chen, Q.; Zheng, X.; Wei, X. Acta Chim. Sinica 2005, 63, 572.
       

    17. [17]

      Zhang, Y.; Ma, X.; Zhang, X.; Lei, M. Acta Chim. Sinica 2016, 74, 340.  doi: 10.6023/A15120781
       

    18. [18]

      Yang, Y.; Zhang, Q.; Shi, J.; Fu, Y. Acta Chim. Sinica 2016, 74, 422.  doi: 10.6023/A15110736
       

    19. [19]

      John, G. H.; May, I.; Sarsfield, M. J.; Steele, H. M.; Collison, D.; Helliwell, M.; McKinney, J. D. Dalton Trans. 2004, 734.

    20. [20]

      Natrajan, L.; Burdet, F.; Pecaut, J.; Mazzanti, M. J. Am. Chem. Soc. 2006, 128, 7152.  doi: 10.1021/ja0609809

    21. [21]

      Berthet, J. C.; Nierlich, M.; Ephritikhine, M. Chem. Commun. 2004, 870.

    22. [22]

      Berthet, J. C.; Nierlich, M.; Ephritikhine, M. Dalton Trans. 2004, 2814.

    23. [23]

      Anderson, N. H.; Yin, H.; Kiernicki, J. J.; Fanwick, P. E.; Schelter, E. J.; Bart, S. C. Angew. Chem., Int. Ed. 2015, 54, 9386.  doi: 10.1002/anie.201503771

    24. [24]

      Wang, X.; Andrews, L.; Vlaisavljevich, B.; Gagliardi, L. Inorg. Chem. 2011, 50, 3826.  doi: 10.1021/ic2003244

    25. [25]

      Arney, D. S. J.; Burns, C. J. J. Am. Chem. Soc. 1995, 117, 9448.  doi: 10.1021/ja00142a011

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return